
UNIVERSIDADE FEDERAL FLUMINENSE

ESCOLA DE ENGENHARIA

MESTRADO EM ENGENHARIA DE PRODUÇÃO

DANIEL DIAS DE OLIVEIRA NETO

IMPROVEMENTS TO A BRANCH-CUT-AND-PRICE ALGORITHM FOR THE EXACT

SOLUTION OF PARALLEL MACHINES SCHEDULING PROBLEMS

NITERÓI

2015

DANIEL DIAS DE OLIVEIRA NETO

IMPROVEMENTS TO A BRANCH-CUT-AND-PRICE ALGORITHM FOR THE EXACT

SOLUTION OF PARALLEL MACHINES SCHEDULING PROBLEMS

Thesis presented to the Production Engi-
neering graduate program of Universidade
Federal Fluminense in partial fulfillment of
the requirements for the degree of Master
of Science. Concentration field: Systems,
Decision Support and Logistics.

Advisor: Prof. Dr. Artur Alves Pessoa

Niterói

2015

DANIEL DIAS DE OLIVEIRA NETO

IMPROVEMENTS TO A BRANCH-CUT-AND-PRICE ALGORITHM FOR THE EXACT

SOLUTION OF PARALLEL MACHINES SCHEDULING PROBLEMS

Thesis presented to the Production Engineering graduate
program of Universidade Federal Fluminense in partial
fulfillment of the requirements for the degree of Master of
Science. Concentration field: Systems, Decision Support
and Logistics.

Approved in December 2015.

JURY

Advisor: Prof. Artur Alves Pessoa , D.Sc.

Universidade Federal Fluminense

Prof. Eduardo Uchoa Barboza , D.Sc.

Universidade Federal Fluminense

Prof. Ruslan Sadykov , D.Sc.

INRIA Bordeaux – Sud-Quest

Niterói

2015

To Paula.

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Artur Pessoa, for his support throughout my Mas-

ter’s. For all his efforts to explain me many complex concepts, for revising my writing and

helping me with programming. His passion for his research is admirable and inspiring.

I would also like to thank Dr. Eduardo Uchoa, for his invaluable lessons and willingness

to help, every time I showed up by his office. And Dr. Ruslan Sadykov, for accepting to be be

part of the Jury and for all valuable comments and suggestions to my work.

To my friends Marcos Roboredo, Luiz Aizemberg, Liana Franco, Hugo Krammer, Fred-

erico Galaxe, André Velasco, Luiz Henrique Santanna, José Maurício, Ubiratam, Rafaelli and

Antônio Camargo, thanks for making the time we spent at the lab such a pleasure and fun.

To Paula, for all her support, despite many nights and weekends we spent apart during

the past two years. Her company gives purpose to all my endeavours. Last, to my family, for all

their support and for teaching me the value of knowledge.

ABSTRACT

This work proposes improvements to a Branch-Cut-and-Price algorithm proposed by
Pessoa et al (2010) to solve the parallel machine scheduling problem minimizing the weighted
tardiness, along with a review of previous works. A new family of cuts was proposed to
strengthen the used relaxation, with an efficient genetic separation algorithm. The main result of
this work was the projection of a very large formulation into a more tractable one, strengthened
by the variable fixation performed in the latter and by cut generation, in a Benders decompo-
sition fashion. The improved algorithm was capable of solving 143 out of the 150 literature
instances, being 8 solved for the first time.

Keywords: Operations Research, Scheduling, Integer Programming, Column Generation, Poly-

hedral Combinatorics, Branch-Cut-and-Price.

RESUMO

Esse trabalho propõe melhorias ao algoritmo de Branch-Cut-and-Price proposto por Pes-
soa et al (2010) para resolver o problema de escalonamento de tarefas em máquinas paralelas
minimizando o atraso ponderado, além de uma revisão de trabalhos passados. Uma nova família
de cortes foi proposta para fortalecer a formulação usada, com um eficiente algoritmo genético
de separação. O principal resultado desse trabalho foi a projeção de uma formulação extensa
para uma formulação mais tratável, fortalecida pela fixação de variáveis realizada e por geração
de cortes, como feito numa Decomposição de Benders. O algoritmo aprimorado foi capaz de
resolver 143 das 150 instâncias da literatura, sendo 8 resolvidas pela primeira vez.

Palavras-chave: Pesquisa Operacional, Escalonamento de Tarefas, Programação Inteira, Ger-

ação de Colunas, Combinatória Poliédrica, Branch-Cut-and-Price.

7

CONTENTS

1 INTRODUCTION 13

1.1 MOTIVATION . 13

1.2 THEME DEFINITION . 13

1.3 ACHIEVED RESULTS . 14

1.4 OUTLINE . 16

2 THEORETIC FOUNDATIONS 17

2.1 SCHEDULING . 17

2.1.1 FRAMEWORK AND NOTATION 17

2.1.2 SCHEDULE REPRESENTATION 19

2.1.3 THREE EXAMPLES OF SCHEDULING PROBLEMS 20

2.2 METAHEURISTICS . 23

2.2.1 GENETIC ALGORITHM . 23

2.3 COLUMN GENERATION . 25

2.3.1 DANTZIG-WOLFE DECOMPOSITION 26

2.4 BENDERS DECOMPOSITION . 28

3 PREVIOUS WORKS 30

3.1 THE PROBLEM . 30

3.2 LITERATURE REVIEW . 30

3.3 THE TIME-INDEXED FORMULATION 32

3.4 THE BCP-PMWT ALGORITHM . 35

3.4.1 EXTENDED CAPACITY CUTS 39

3.4.2 BRANCH-CUT-AND-PRICE . 40

3.5 TRIANGLE CLIQUE CUTS . 41

3.5.1 SEPARATING ALGORITHM . 42

4 PROPOSED IMPROVEMENTS 45

4.1 THE CAPACITY PATH POLYHEDRON 45

4.2 OVERLOAD ELIMINATION CUTS . 46

4.3 THE GENETIC ALGORITHM FOR CUT SEPARATION 51

4.4 TIME-INDEXED FORMULATIONS . 56

4.4.1 TIME-INDEXED CUTS BY PROJECTION OF THE ARC-TIME-

INDEXED FORMULATION . 58

5 COMPUTATIONAL TESTS AND RESULTS 62

5.1 SOLVING THE ARC-TIME-INDEXED LINEAR RELAXATION 63

5.2 COMPARISON OF DIFFERENT TIME-INDEXED FORMULATIONS . 63

5.3 SOLVING THE PROBLEM TO INTEGRALITY 65

6 CONCLUSION 67

APPENDICES 71

A ROOT NODE RESULTS 72

B DETAILED TIME-INDEXED FORMULATIONS PERFORMANCE 76

C FULL RESULTS 80

LIST OF FIGURES

2.1 Traditional Gantt Chart . 19

2.2 Adapted Gantt Chart for Machine Representation 20

2.3 Gantt Chart – First Example Instance Solution 21

2.4 Gantt Chart – Second Example Instance Solution 22

2.5 Gantt Chart – Third Example Instance Solution 22

2.6 Classic Crossover . 24

2.7 Classic Mutation . 24

3.1 Hierarchy of related Scheduling Problems . 31

3.2 Fractional Gantt Chart . 33

3.3 Another Fractional Gantt Chart . 33

3.4 Gantt chart of a fractional solution . 34

3.5 Graph of a fractional solution . 36

3.6 Swap of Two Consecutive Jobs . 36

3.7 Postponement of the Last Job . 37

3.8 RHECC Support Graph . 40

3.9 Triangle Clique Compatibility Graph (G) . 43

3.10 Example Compatibility Graph (G) . 44

4.1 OEC’s Validity Proof - Case 1 when m = 2 and tiz = 0 48

4.2 OEC’s Validity Proof - Case 2 when m = 2 and tiz = 0 48

4.3 OEC’s Validity Proof - Case 2 when m = 2 and tiz ≥ 0 49

4.4 Example OEC for a Fractional Solution . 51

4.5 Example OEC for an Integer Solution . 51

4.6 Example OEC Chromosome Codification . 52

4.7 Example of Procedures for Generating Connected Subgraphs 55

4.8 Support graph for separation of cuts derived from ATIF 59

4.9 Projection of cuts for 8 jobs example instance 60

10

4.10 Gantt chart of example instance TIF linear relaxation solution 61

LIST OF TABLES

2.1 First Example Instance Data . 20

2.2 First Example Instance Solution . 20

2.3 Second Example Instance Data . 21

2.4 Second Example Instance Setup Times . 21

2.5 First Example Instance Solution . 22

2.6 Third Example Instance Data . 22

2.7 Glossary of a few Genetic Algorithm’s terms 23

3.1 Example Instance data . 34

5.1 Root relaxation and cut separation results . 63

5.2 Comparison of Alternative Time-Indexed Formulations – Summary 64

5.3 Effect of Variable Fixation in the Mz Time-Index Formulation – Summary . . . 64

5.4 Effect of Projected Cuts in the Mz Time-Indexed Formulation – Summary . . . 65

5.5 Summary of Results . 66

5.6 Summary of Results – BCP-PMWT-OTI Best Procedure 66

A.1 Root relaxation and cut separation results . 72

B.1 Comparison of Alternative Time-Indexed Formulations 76

B.2 Effect of Variable Fixation in the Mz Time-Index Formulation 77

B.3 Effect of Projected Cuts in the Mz Time-Indexed Formulation 78

C.1 Detailed Results for m = 2 and n = 40 instances 80

C.2 Detailed Results for m = 4 and n = 40 instances 81

C.3 Detailed Results for m = 2 and n = 50 instances 82

C.4 Detailed Results for m = 4 and n = 50 instances 83

C.5 Detailed Results for m = 2 and n = 100 instances 84

C.6 Detailed Results for m = 4 and n = 100 instances 86

GLOSSARY

ATIF Arc-Time-Indexed Formulation

BCP Branch-Cut-and-Price

BCP-PWMT Branch-Cut-and-Price - Parallel Machines Weighted Tardiness

BCP-PWMT-OTI Branch Cut and Price - Parallel Machines Weighted Tardiness -

Overload Time Indexed

ECC Extended Capacity Cut

LPP Linear Programming Problem

RHECC Rounded Homogeneous Extended Capacity Cut

TIF Time-Indexed Formulation

1 INTRODUCTION

1.1 MOTIVATION

The meaning of the word Scheduling is to organize, distribute. In this work’s context,

Job Scheduling is the process of assigning and sequencing jobs on machines, in the best possible

way. However, the resources and tasks considered by the models, can be other than machines

to process jobs, such as computer processors to process programs, airport runways to process

landings and take-offs, construction crews to process construction phases, and so on. Scheduling

is a well studied class of combinatorial problems, that emerges on diverse real world situations,

specially in the manufacturing of goods, where the sequencing of hundreds of tasks may be

necessary. An optimal sequence in such context may translate to the savings of a significant share

of resources, when compared to the possibly practiced sub optimal solution. There are many

variants of the scheduling problem, with varying machine environments, jobs characteristics

and objectives to optimize.

This work focus on the parallel machine scheduling problem minimizing the weighted

tardiness, where the environment is composed of two or more identical machines, each job has

a particular processing time, due date and weight, and the objective is to minimize the total

weighted tardiness, where the tardiness is defined as how much each job was past its due date,

being zero if completed on, or prior to, the due date. For shortness we refer to this problem as

the weighted tardiness parallel machine problem.

1.2 THEME DEFINITION

Combinatorial optimization problems, such as the job scheduling, may be solved by

heuristic or exact methods. On the first case, the solution time is modest, but the solution quality

is not guaranteed, when comparing to an optimal solution. In the second case, the found solution

14

is necessarily optimal, but the computational time may grow intractably large. In both cases, it

is desired that academic research be carried in order to provide estimates on the solution quality

for heuristics and on the computational time, in the case of exact methods. This dissertation is

restricted to the study of exact methods for combinatorial optimization problems.

For the problem considered in this dissertation, the best method found in the literature

is an Branch-Cut-and-Price (BCP) algorithm proposed by Pessoa et al (2010). In the course of

this document, this algorithm is referred to as BCP-PMWT, where PMWT stands for parallel

machine with weighted tardiness. The focus of this study is to develop additional techniques to

be incorporated to the BCP-PMWT, in order to improved its performance.

1.3 ACHIEVED RESULTS

The BCP algorithm is a variant of the Branch-and-Bound algorithm, where the relax-

ation optimized to prune the tree is solved using column and cut generation combined. The use

of these techniques allows solving very complex relaxations, in terms of the number of vari-

ables and constraints, in reduced computational time. For example, the relaxation solved by

the BCP-PMWT uses a formulation that defines a binary decision variable for each time period

t and job pair (i, j) scheduled consecutively on the same machine. For that, this relaxation is

referred to as arc-time-indexed, where each arc refers to the pair of jobs (i, j). The number

of variables and constraints generated by this formulation grows rapidly with the size of the

instance. To contain this increase, this formulation is substituted for an equivalent, called mas-

ter, with only one constraint per job, but with an exponential number of variables, where each

variable now corresponds to a complete sequence of jobs processed on a single machine. The

column generation method consists in adding these variables as needed in the course of the re-

laxation resolution. Beside that, the arc-time-indexed formulation is strengthened by additional

constraints that are satisfied by any feasible solution, but prohibits certain relaxed solutions.

These constraints, called cuts, are exponential in number, being also added by demand using a

separation algorithm. By solving the relaxation by column generation, all cuts to be inserted in

the arc-time-indexed formulation are translated to the master formulation, by a systematic pro-

cedure. Another technique employed in the BCP-PMWT algorithm is the fixation of variables

by reduced cost. In this case, a procedure is carried out to demonstrate by the reduced costs in

the master formulation that certain arc-time-indexed variables can be removed from the formu-

lation without loss of the optimal solution. For each fixed variable, this procedure proves that

any feasible solution where it assumes a positive value have a bigger cost than the best known

15

solution. The elimination of arc-time-indexed variable have the effect of accelerating the col-

umn generation procedure, besides improving the relaxation quality. At last, when the number

of remaining variables, is below a threshold,the BCP-PMWT method transfer the remaining of

the optimization to a commercial solver, using the reduced arc-time-indexed formulation.

In this dissertation, the following techniques were developed in order to improve the

BCP-PMWT.

• A new family of cuts was derived, called Overload Elimination Cuts (OEC), for the arc-

time-indexed formulation, in a way to improve even more the quality of the relaxation used

by the BCP-PMWT. As the number of constraints potentially generated by this family is

exponential, they are also added by demand.

• To insert the OECs translated to the master formulation during the BCP-PMWT execution,

a genetic algorithm was developed for the cut separation.

• When the BCP-PMWT transfer the remaining optimization to the commercial solver, it

was proposed to use job-time indexed, or simply time-indexed for shortness, formula-

tions instead of arc-time-indexed. Experiments using four alternative formulations are

presented. The time-indexed formulations are more compact, allowing for the commer-

cial solver to expand the Branch-and-Bound tree much faster. However, the relaxations

based on these formulation are weaker, reducing the algorithm ability to prune the tree.

• To strengthen the time-indexed formulation used in the previous item case, cuts derived

from the arc-time-indexed formulation are projected over the polyhedron defined by the

time-indexed formulation.

The improved method is called as BCP-PMWT-OTI, where OTI stands for overload,

referring to the new family of cuts and time-indexed, due to the formulation used to finish the

optimization.

As a result of the inclusion of these techniques, the BCP-PMWT-OTI was capable of

solving 143 out of the 150 literature instances, being 8 solved for the first time. Besides that,

for the instances already solved by the BCP-PMWT, the computational time of the new method

was inferior in 45 cases.

16

1.4 OUTLINE

Chapter 2 presents some theoretical foundations for the development of the proposed

improvements. Next, chapter 3 presents a brief literature review of exact methods related to the

weighted tardiness scheduling problem, followed by a review of the BCP-PMWT and other ex-

isting techniques that are applied to the BCP-PMWT-OTI. Chapter 4 details the novel improve-

ments that also composes the BCP-PMWT-OTI. Following, chapter 5 details how the computa-

tional tests were performed and presents its results. Finally, chapter 6 draws some conclusions

and proposes aspects that could be pursued in future works.

17

2 THEORETIC FOUNDATIONS

2.1 SCHEDULING

In this section, we present the standard framework and notation used on the scheduling

literature, and three different examples of scheduling problems.

2.1.1 FRAMEWORK AND NOTATION

Scheduling problems consists of a set of jobs J = {1, . . . , n} to be processed on a set of

machinesM = {1, . . . ,m}. The index used for jobs is usually j and the index used for machines

is usually i. The number of jobs to be processed is n and the number of machines available to

process them is m. Each job can be processed for at most a single machine at a time, and each

machine can process at most a single job at a time.

As time is discretized, a period of time t refers to the period spawning from instant t− 1

to t. We usually say that a job started or ended at time t meaning the instant of time t, and that

a machine was busy at a time t meaning the time period t. So, a job of processing time one, if

starting at time zero, will finish at time one, and its machine was busy during period of time one,

or simply, at time one.

Jobs can have many information to characterize them, such as:

• A processing time pj , or pij when it depends on the machine processing it.

• A release date rj , when job j can start to be processed.

• A due date dj , when job j should be completed.

• A deadline d̄j , when job j must be completed.

• An earliness penalty weight hj , also called holding costs.

18

• A tardiness penalty weight wj .

• A cost function fj(t) based on time of completion.

Graham et al (1979) established the 3-field notation,

α | β | γ, (2.1)

where α describes the machine environment, β represents the set of tasks characteristics, and γ

is the objective to be minimized. We here present a brief overview of it. A more comprehensive

review can be found in Pinedo (2012).

The field α can assume one of the following values:

Single machine (1) The simplest environment, consisting of a single machine to process all

jobs.

Identical machines in parallel (Pm) Each job j can be processed by any of the m identical

machines, unless restricted by Mj , as explained latter.

Machines in parallel with different speeds (Qm) Like the previous environment, with speed

vi defined for each machine so that the processing time of job j on machine i equals pj/vi.

Unrelated machines in parallel (Rm) Like the Pm, with an specific processing time pi,j de-

fined for each job-machine pair.

Flow shop (Fm) Every job has m production stages to be processed always in the same se-

quence. Each of m available machines can execute only one stage of production.

Job shop (Jm) Like the flow shop, but different jobs can have different production sequences.

Jobs not necessarily need to be processed once at each machine.

Open shop (Om) Each job have a set of operations, that may or may not involve all machines,

to be performed following in any sequence.

The field β can be empty or assume one or more of the following values:

Release dates (rj) Each job has a release date and cannot start to be processed before it.

Preemptions (prmp) An operation can stop and be resumed later.

Precedence constraints (prec) A set of job pairs (j, k) can be defined so that no job k must be

preceded by its pair k.

Sequence dependent setup times (sj,k) For each job pair (j, k), a setup time is defined, mean-

ing that, on the same machine, job k can only start being processed sj,k periods of time

after job j terminates.

19

Machine eligibility restrictions (Mj) For multi-machine environments, each job j has a set of

machines Mj where it can be processed.

Field γ assumes the objective function formula. The three main penalty functions fj(Cj),

based on the completion time Cj of job j, are:

Lateness (Lj) Lj = Cj − dj
Tardiness (Tj) Tj = max{0, Cj − dj}

Unit Penalty (Uj) Uj = 1 if Cj > dj and 0 otherwise

The notation of our focused variant is then P ||ΣwjTj , since its machine environment is

the identical machines in parallel, its objective function is to minimize the weighted tardiness,

and there are no special constraints or characteristics.

2.1.2 SCHEDULE REPRESENTATION

A schedule is fully described by listing for each job, the intervals it is processed and

on which machine. In P ||ΣwjTj , since a job can be processed on any machine and there is no

preemption, the start or completion time of each job suffices to describe the schedule.

One way to graphically represent a schedule is the Gantt chart. The original Gantt chart,

as presented in Gantt (1910), represents when each resource is being used, using the x axis to

represent time and the y axis to represent resources, with no labels on the bars. Figure 2.1 shows

a Gantt chart representing when two machines are busy, while executing 5 jobs of processing

times {4, 5, 4, 5 e 2}.

0 5 10 time

1

2

Figure 2.1: Traditional Gantt Chart

Note that on this representation, there is no information about on which machine a job is

being processed. For the P ||ΣwjTj , this is acceptable. For different schedule problems, a better

representation of the same schedule perhaps would be the one of figure 2.2. In it, the machines

are represented on the y axis and the jobs are labeled on their respective bars.

20

0 5 10 time

1

2

3

4

51

2

Figure 2.2: Adapted Gantt Chart for Machine Representation

We will refer to any Gantt-like chart simply as Gantt charts throughout the text.

2.1.3 THREE EXAMPLES OF SCHEDULING PROBLEMS

The first example we present is for the single machine with release dates problem min-

imizing the total , weighted completion time (1|rj|
∑
wjCj). The problem data is presented in

the table below.

Job(j) Processing time (pj) Release Date (rj) Weight (wj)

1 4 5 1

2 1 0 2

3 4 4 1

4 4 3 3

5 5 3 3

Table 2.1: First Example Instance Data

A feasible solution for the problem, with cost 109, is listed in the table below and repre-

sented in figure 2.3.

Job(j) Start Completion (Cj)

1 7 11

2 0 1

3 11 15

4 3 7

5 15 20

Table 2.2: First Example Instance Solution

21

0 5 10 15 20 time

1

2

3

4

5

Figure 2.3: Gantt Chart – First Example Instance Solution

The second example we present is the makespan minimization on parallel machines with

sequence dependent setup times problem (P |si,k|Cmax). The problem data is presented in the

table below, except for the number of machines m = 2.

Job(j) Processing time (pj)

1 5

2 9

3 4

4 4

5 6

Table 2.3: Second Example Instance Data

@
@

@
@@

j

k
1 2 3 4 5

1 1 1 1 0

2 0 2 3 2

3 0 1 0 1

4 3 1 0 2

5 1 0 3 2

Table 2.4: Second Example Instance Setup Times

A feasible solution for the problem, with cost 16, is listed in the table below and repre-

sented in figure 2.4.

22

Job(k) Start Preceding Job(j) Completion (Cj)

1 0 - 5

2 5 1 15

3 0 - 4

4 4 3 8

5 8 4 16

Table 2.5: First Example Instance Solution

0 5 10 15 time

1 s1,2 2

3 4 s4,5 5M1

M2

Figure 2.4: Gantt Chart – Second Example Instance Solution

The third example we present is the makespan minimization on the flow shop environ-

ment (F ||Cmax). Three machines composes the flow shop, namely M1, M2 and M3. Each job

has to be processed following the sequence M1 −M2 −M3. The processing time pij of job j in

machine i is given by the table below.

Job(j) p1j p2j p3j

1 3 1 3

2 2 1 1

3 2 2 1

Table 2.6: Third Example Instance Data

A feasible solution for the problem, with cost 10, is represented in figure 2.5.

0 5 10 time

1 2 3

1 2 3

1 2 3

M1

M2

M3

Figure 2.5: Gantt Chart – Third Example Instance Solution

23

2.2 METAHEURISTICS

Heuristics are optimization methods that seek for good solutions, not guaranteeing its

optimality. According to Glover and Kochenberger (2003), metaheuristics are heuristics that

incorporates higher level procedures for escaping from local optima in order to better search the

solution space.

In this section, we present the general guidelines of one of the most popular metaheuris-

tics, the Genetic Algorithm.

2.2.1 GENETIC ALGORITHM

According to Goldberg (1989), genetic algorithms perform its search for better solutions

based on the mechanics of natural selection and genetics. They are based on operators to com-

bine solutions into new ones, to randomize a few characteristics of the solutions and to select

the best solutions.

Usually, a local search is also performed, which results in a memetic algorithm. But it is

often referred to simply as genetic or evolutionary algorithm. The literature borrows some of its

terms from the Genetics field, some of them are summarized in table 2.7.

Table 2.7: Glossary of a few Genetic Algorithm’s terms

Term Meaning

Fitness indicator of how good a solution is, relative to the solutions set

Chromosome string, a codified solution

Crossover combination of 2 solutions

Gene feature, character

Alelle feature value

Individual solution

Mutation random modification of one or more features of a solution

Population set of solutions

The classical codification of a chromosome is binary, with each bit representing a feature.

The traditional operators of a genetic algorithm are the crossover, mutation and selection, they

are called operators since they are applied to single individuals or a population, to change them

in some way.

24

A crossover operator is applied to a population, and consists of selecting 2 individuals,

called parents, and generating a new individual, called child, by replicating parts of the parent

chromosomes. Figure 2.6 illustrates a crossover operation, in which the child is formed by the

first half of its father chromosome, and the second half of its mother chromosome. Crossover

operators can vary in the way the parents are selected, and how they are combined to form the

child.

0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 0 1

0 1 0 1 1 1 0 0 0 1

Father Chromosome Mother Chromosome

Child Chromosome

Figure 2.6: Classic Crossover

A mutation operator is applied to an individual, and consists on randomly switching a

set of bits, that is, changing bits from 0 to 1, or vice versa. Figure (2.7) illustrates a mutation

operation in which the eighth bit was switched. Mutation operators can vary in the size of the

set of bits switched, and in how the set is chosen.

0 1 0 1 1 1 0 1 0 1

0 1 0 1 1 1 0 0 0 1

Original Chromosome

Mutant Chromosome

Figure 2.7: Classic Mutation

A selection operator is applied to a population, and consists of eliminating a number of

the worst individuals, based on a fitness function.

The algorithm 1 represent the steps of a simple genetic algorithm. This model makes use

of binary codification and generic crossover, mutation and selection operators.

25

Algorithm 1: Classic Genetic Algorithm

Input: nPopulation, rateCrossover, probMutation
Output: Best found solution
Population← generateInitialPopulation(nPopulation)
while not stopCriteria() do

for i← 1 to nPopulation× rateCrossover do
father ← random individual from Population
mother ← random individual from (Population− father)
child← crossover(father,mother)
child← mutation(child) (probMutation% chance of ocurring)
if Fitness(child) > Fitness(bestIndividual) then

bestIndividual ← child
end
Population← Population+ child

end
Population← Selection(Population)

end
return bestIndividual

Each iteration of the algorithm is called a generation, since a portion of the population

dies and the remaining portion will reproduce. The algorithm is very flexible, allowing for any

sequence and frequency of operations. Also, custom codification and operators more suitable to

any class of problem can be developed.

According to Whitley (1994), genetic algorithms belongs to the class of methods known

as "weak methods", because it makes few assumptions about the problems it solves. From the

practical standpoint, this is good because the implementation of a genetic algorithm will then

require little knowledge about the problem at hand.

2.3 COLUMN GENERATION

Column generation is a method for optimizing linear programming problems (LPPS)

with a huge number of variables. Consider the LPP (2.2) below.

Minimize cᵀx

Subject to Ax = b

x ≥ 0

(2.2)

Each variable has a correspondent column in the matrix A. In general lines, the algorithm

consists of solving a restricted LPP, with only a subset of matrix A columns. Then, it is verified

if all columns not in A have non-negative reduced costs. If so, the algorithm terminates and the

26

restricted LPP solution is optimal, if not, a negative reduced cost column is included in A and the

algorithm iterates. The term column generation comes from this iterative insertion of columns.

Since the number of columns is very large, the computation of the reduced cost for

every column is not feasible in practice, as it would be too computationally expensive. The

applicability of the method relies in the pricing sub-problem (2.3) having a special structure, for

it to be solved efficiently.

min
i∈set of columns

c̄i (2.3)

Some problems are naturally fit to the use of column generation, such as the Cutting

Stock. One way to use column generation is by applying Dantzig-Wolfe Decomposition to

problems presenting a special structure.

2.3.1 DANTZIG-WOLFE DECOMPOSITION

The Dantzig-Wolfe Decomposition can be applied to problems presenting the following

structure,
Minimize cᵀx

Subject to Ax ≤ b

x ∈ P.

(2.4)

Let xj , j ∈ J and θk, k ∈ K, be respectively the sets of extreme points and extreme rays

of the polyhedron P . Any element x ∈ P can then be represented in the form

x =
∑
j∈J

xjλj +
∑
k∈K

θkwk (2.5)

where
∑
j∈J

λj = 1, λj ≥ 0, j ∈ J and wk ≥ 0, k ∈ K.

27

Replacing x in (2.4), we obtain the so-called Dantig-Wolfe Master (DWM) problem

Minimize
∑
j∈J

(cᵀxj)λj +
∑
k∈K

(cᵀθk)wk

Subject to
∑
j∈J

(Axj)λj +
∑
k∈K

(Aθk)wk ≤ b

∑
j∈J

λj = 1

λj ≥ 0 (j ∈ J)

θk ≥ 0 (k ∈ K).

(2.6)

Each column of the DWM problem correspond to one extreme point or extreme ray of

P . In order to solve it by column generation, we restrict it to m+ 1 columns, forming the basis,

solve it, and check if there are any column(s) that have negative reduced costs to be included.

This restricted version of the DWM problem is intuitively referred to as the restricted master

problem.

The reduced cost of a variable λj is given by

c̄j = (cᵀ − πᵀA)xj − α, (2.7)

where (π, α) is the dual solution of the Dantig-Wolfe master problem. And the reduced cost of

variable wk is given by

c̄k = (cᵀ − πᵀA)wk. (2.8)

The main idea of the decomposition algorithm is that, to find a variable with negative

reduced cost, we don’t need to check every variable λj and wk. Since P is a polyhedron, the

variable with lowest reduced cost can be found via the LPP

min
x∈P

[(cᵀ − πᵀA)x− α]. (2.9)

If the found minimum reduced cost is negative, the LPP provide us with an extreme

point, or an extreme ray of P , for which we include its corresponding column in the restricted

master problem, repeating the procedure until no variable’s reduced cost remains negative.

It is not uncommon for the CG algorithm to suffer from slow convergence, in order to

alleviate it, several stabilization techniques were proposed. Pessoa et al (2010) used in its BCP

the Weighted Dantzig-Wolfe decomposition, introduced by Wentges (1997).

28

2.4 BENDERS DECOMPOSITION

Like the column generation approach, when a MILP have a large number of constraints,

the Benders Decomposition is a procedure to generate constraints as needed. Consider the fol-

lowing MILP,

Minimize cᵀx+ gᵀy (2.10a)

Subject to Ax ≥ b (2.10b)

Dx+ Ey ≥ f (2.10c)

x, y ≥ 0. (2.10d)

By relaxing constraint (2.10c), replacing gᵀy by z, and solving (2.10), we obtain the

solution x̃. But x̃ can only be a solution of (2.10) if, and only if, ∃ y | Dx̃ + Ey ≥ f . Consider

the LPP (2.11), and its dual (2.12).

Minimize 0 (2.11a)

Subject to Ey ≥ f −Dx̃ (2.11b)

y ≥ 0 (2.11c)

Maximize πᵀ(f −Dx̃) (2.12a)

Subject to πᵀE ≤ 0 (2.12b)

π > 0 (2.12c)

By the weak duality theorem, πᵀ(f − Dx̃) ≤ 0. If @ y | Dx + Ey ≥ f , then (2.11) is

infeasible, (2.12) is unbounded, and πᵀ(f −Dx̃) ≤ 0 is violated by an extreme ray π̄ of (2.12).

A so called Bender’s feasibility cut π̄ᵀ(f −Dx) ≤ 0 is then generated and added to (2.10). This

procedure iterates until x̃ is feasible for (2.10) (with some y). Let Π be the set of all π̄ associated

29

to the added feasibility cuts. The current reduced master problem is then

Minimize cᵀx+ z (2.13a)

Subject to Ax ≥ b (2.13b)

πᵀx ≥ πᵀf (∀ π̄ ∈ Π) (2.13c)

x, y ≥ 0. (2.13d)

Now, consider the LPP (2.14), and its dual (2.15).

Minimize gᵀy (2.14a)

Subject to Ey ≥ f −Dx̃ (2.14b)

y ≥ 0 (2.14c)

Maximize πᵀ(f −Dx̃) (2.15a)

Subject to πᵀE ≤ gᵀ (2.15b)

π > 0 (2.15c)

Also by the weak duality theorem, πᵀ(f −Dx̃) ≤ gᵀy. If @ y | gᵀy ≤ z, Dx+Ey ≥ f ,

then π̃ᵀ(f −Dx̃) ≤ z̃ is violated, where π̃ is the optimal solution to (2.15). A so called Bender’s

optimality cut π̃ᵀ(f − Dx) ≤ z is then generated and added to (2.13). This procedure iterates

until z̃ ≥ gᵀy for some feasible y. At this point the pair (x̃, z̃) represents an optimal solution to

the original problem whose associated value of ỹ can be found by solving (2.14).

30

3 PREVIOUS WORKS

This chapter presents a brief literature review on the weighted tardiness parallel machine

problem, an overview of the BCP-PMWT algorithm, and techniques from previous works that

were incorporated into BCP-PMWT-OTI.

The outline of this chapter is as follows.

Section 3.2 presents a literature review of exact algorithms for related problems. Section

3.3 presents the time-indexed formulation and a small example of the P ||
∑
wjTj problem.

Section 3.4 presents the BCP-PMWT algorithm. Section 3.5 presents the triangle clique cuts,

with a simple and exact separation procedure.

3.1 THE PROBLEM

Let J be a set of n jobs to be processed in a set M of m identical parallel machines.

Each task has a processing time pj and is associated with a cost fj(Cj), based on its completion

time Cj . Each machine can only process one job at a time and each job has to be processed by a

single machine, with no pauses or preemption. The goal is to find a schedule that minimizes the

sum of individual costs. Here, we assume that fj(Cj) = wjTj , where wjis the weight of job j

and Tj is its tardiness in the schedule, calculated as max 0, Cj − dj where dj is the job due date.

3.2 LITERATURE REVIEW

In this section, we present a review of exact algorithms for scheduling problems closely

related to P ||
∑
fj(Cj) found in the literature.

Figure 3.1 shows the considered problems, each box representing a variant, with a list

of works that presents an exact algorithm or a review of exact algorithms for it. Each arrow

connects one variant to its immediately more specialized case. It is important to remember

31

that, for any combinatorial optimization problem, a general algorithm can be applied to special

cases but not vice versa. For example, an algorithm for P ||
∑
fj(Cj) can be used to solve

1||
∑
fj(Cj), but an algorithm for 1||

∑
wjTj can’t be used to solve 1|si,j|

∑
wjTj .

1||
∑
fj(Cj)

Ibaraki and Nakamura (1994)

Tanaka et al (2009)*

Tanaka and Fujikuma (2012)

1||
∑
αjEj + βjTj

Sourd (2009)
1|si,j |

∑
wjTj

Tanaka and Araki (2013) 1||
∑
wjTj

Potts and Wassenhove (1985)

Babu et al (2004)

1||
∑
Tj

Koulamas (2010)

P ||
∑
fj(Cj)

Pessoa et al (2010)

P ||
∑
αjEj + βjTj

P ||
∑
wjTj

Souayah et al (2009)

P ||
∑
Tj

Tanaka and Araki (2008)

R||
∑
fj(Cj)

R||
∑
αjEj + βjTj

R||
∑
wjTj

Liaw et al (2003)

R||
∑
Tj

*without machine idle time

Figure 3.1: Hierarchy of related Scheduling Problems

Potts and Wassenhove (1985) proposed a branch-and-bound algorithm for the single ma-

chine total weighted tardiness problem (1||
∑
wjTj) capable of solving instances of up to 40

jobs. Its lower bound was based on Lagrangian relaxation, solved by a multiplier adjustment

method. A review of 6 exact algorithms for 1||
∑
wjTj was presented by Abdul-Razaq et al

(1990), with computational tests that highlighted the superiority of Potts and Wassenhove (1985)

algorithm at the time.

Tanaka et al (2009) presented an efficient algorithm for solving the 1||
∑
fj(Cj) when

machine idle times are not permitted. Their algorithm is based on the work of Ibaraki and

Nakamura (1994), which used the Successive Sublimation Dynamic Programming (SSDP) to

solve 1||
∑
fj(Cj).

The SSDP, proposed by Ibaraki (1987), is based on a set of dynamic programming re-

laxations for a problem. It consists of solving a sequence of dynamic programming relaxations,

stepping from the weaker to the stronger, tightening the gap in the process. Also, when stepping

from one model to the next, states that can be proved not to be part of an optimal solution are

32

eliminated to alleviate memory use and speed up computations.

The dynamic programming relaxations can be derived in many different ways. The ones

used by Ibaraki and Nakamura (1994) were the state-space relaxations presented by Abdul-

Razaq and Potts (1988).

It is interesting to note that the SSDP method uses dynamic programming in a different

way than most exact algorithms, which usually employ the Lagrangian bounds on a Branch and

Bound framework. As Tanaka et al (2009) stated, their algorithm is based fully on dynamic

programming, and they tried a Branch and Bound algorithm first (Tanaka and Araki, 2006), not

obtaining the same efficiency of the SSDP method.

Tanaka and Fujikuma (2012) extended Tanaka et al (2009) to permit machine idle times.

Following the same SSDP framework, Tanaka and Araki (2013) presented an algorithm for the

single machine total weighted tardiness problem with sequence-dependent setup times, 1|si,j|
∑
wjTj .

Pessoa et al (2010) was the first to explicitly present an integer programming model

for scheduling problems using arc-time-indexed variables. The arc-time-indexed formulation

(ATIF), uses variables xti,j to indicate job i finishes and job j starts at time t, on the same

machine. These variables are an extension of the time-indexed variables of Dyer and Wolsey

(1990), ytj , which indicates job j finishes at time t.

3.3 THE TIME-INDEXED FORMULATION

Dyer and Wolsey (1990) proposed a MIP formulation for scheduling problems using one

binary variable for each job-time to indicate that a job j finishes at time t. A time period t is

defined as spawning from instant t − 1 to instant t. This formulation is referred to as the time-

indexed formulation (TIF). For the single machine case, given pj as the processing time of job j,

fj(t) as the cost of job j finishing on instant t, and T as the last time period an optimal schedule

may finish, the TIF is defined as

Minimize
∑
j∈J

T∑
t=pj

fj(t) y
t
j (3.1a)

Subject to
T∑

t=pj

ytj = 1 (j ∈ J) (3.1b)

∑
j∈J

min{t+pj−1,T}∑
s=max{pj ,t}

ysj ≤ 1 (t = 1, . . . , T) (3.1c)

ytj ∈ {0, 1} (j ∈ J ; t = 0, . . . , T − pj). (3.1d)

33

Many particularities can be easily incorporated into this formulation, for example release

dates (rj) are modeled by simply eliminating any variable ytj with t − pj < rj . The multi-

machine environment is modeled by replacing the right side of (3.1c) by the number of available

machines, m. For the weighted tardiness parallel machine problem, fj(t) = max{0, dj − t}.

In order to analyse the linear relaxation of (3.1), we adapt the Gantt chart for the visual-

ization of these “fractional schedules”, using the height of each bar to represent how much of a

job is being executed.

Figures 3.2 and 3.3 show the same 5-job schedule on 2 machines, with job 1 starting 70%

at time 0 and 30% at time 2, job 2 starting 30% at time 0 and 70% at time 2, job 3 starting 70%

at time 4 and 30% at time 6, job 4 starting 30% at time 5 and 70% at time 7 and job 5 starting

fully at time 0. For the case of the second figure, when a bar is too thin to accommodate a label,

colors can be used instead of labels.

0 5 10 time

1

2

3

4

5

Figure 3.2: Fractional Gantt Chart

0 5 10 time

1

1
2

2

3

3
4

45

1

2

Figure 3.3: Another Fractional Gantt Chart

Now, a small instance of P ||
∑
wjTj with 8 jobs and 2 machines is presented as an

example. Its data is in table (3.1).

34

Job(j) Processing time (pj) Weight (wj) Due Date (dj)

1 6 2 5

2 4 2 10

3 3 3 11

4 6 1 7

5 5 4 10

6 6 2 5

7 4 2 10

8 8 3 11

Table 3.1: Example Instance data

An optimal solution to the linear relaxation of this example is given by the set of variables

listed in (3.2), being null every non listed variable.

x0
0,1 = 1 x6

1,2 = 0, 5 x10
2,8 = 0, 5 x13

3,6 = 0, 5 x19
8,0 = 0, 5

x0
0,5 = 0, 5 x6

1,5 = 0, 5 x10
7,3 = 0, 5 x16

2,4 = 0, 5 x22
4,0 = 0, 5

x0
0,6 = 0, 5 x6

6,7 = 0, 5 x11
5,8 = 0, 5 x18

8,4 = 0, 5 x24
4,0 = 0, 5

x5
5,7 = 0, 5 x9

7,3 = 0, 5 x12
3,2 = 0, 5 x19

6,0 = 0, 5

(3.2)

Figure (3.4) is a Gantt chart for the fractional solution listed in (3.2).

0 5 10 15 20 24

1

2

3

4

5

6

7

8

Figure 3.4: Gantt chart of a fractional solution

35

3.4 THE BCP-PMWT ALGORITHM

Pessoa et al (2010) proposed a Branch-Cut-and-Price algorithm for the weighted tardi-

ness parallel machine problem, here referred to as the BCP-PMWT. The algorithm considers a

generic cost function over the completion time,
∑
j∈J

fj(Cj), but the reported experiments consider

only the parallel machines weighted tardiness problem (P ||
∑
wjTj). The formulation used was

the arc-time-indexed formulation (ATIF), which uses a binary variable for each job pair (i, j)

and time period t to indicate that job i finishes and job j starts at time t, on the same machine.

Considering T as the latest time a job can finish in an optimal schedule, defining J+ = J ∪ {0}

and assuming that p0 = 0, the ATIF follows:

Minimize
∑
j∈J+

∑
j∈J\{i}

T−pj∑
t=pi

fj (t+ pj)x
t
i,j (3.3a)

Subject to
∑

j∈J+\{j}

T−pj∑
t=pi

xti,j = 1 (j ∈ J) (3.3b)

∑
j∈J+\{i},
t−pj≥0

xtj,i −
∑

j∈J+\{i},
t+pi+pj≤T

xt+pii,j = 0 (∀i ∈ J ; t = 0, . . . , T − pi) (3.3c)

∑
j∈J+,
t−pj≥0

xtj,0 −
∑
j∈J+,

t+pj+1≤T

xt+1
0,j = 0 (t = 0, . . . , T − 1) (3.3d)

∑
j∈J+

x0
0,j = m (3.3e)

xti,j ∈ Z+ (∀ i ∈ J+; ∀ j ∈ J+ \ {i}; t = pi, . . . , T − pj)

(3.3f)

xt0,0 ∈ Z+ (t = 0, . . . , T − 1) (3.3g)

For non-decreasing cost function, variables xt0,j (t > 0) may be removed since there

is always an optimal solution with no idle time. In this case, Pessoa et al (2010) proved that

T = b(
∑n

j=1 pj − pmax)/mc+ pmax. Moreover, variables x0
0,j indicate that job j start at time 0

and variables xtj,0 indicate that job j is the last job processed on its machine, that is, there is no

job succeeding it.

The ATIF solution can be seen as a set of paths in a graph G = (V,A), where V =

{(0, 0), (0, T)}∪{(i, t) | i ∈ J+, t ∈ {1, 2 . . . , T−1}} and each arc ((i, t−pi), (j, t)) correspond

to a xti,j variable. Figure 3.5 represents solution (3.2) as such graph. This shows that the linear

36

0 5 10 15 20 24

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0 0

1

5

6

7

2

5

7

3

8

3

8

2

6

4 4

00 0 0 0 0 0

Figure 3.5: Graph of a fractional solution

relaxation of both TIF and ATIF are the same for this instance.

Pessoa et al (2010) proved that the ATIF strictly dominates the TIF and proposed a few

simple ways to eliminate some variables to strengthen the formulation. For the ATIF to be just

as good as the TIF, it would only need to have the variables xtj,j included. However, ATIF can be

further strengthened in a way that TIF cannot, through the elimination of some variables. Such

variable eliminations come from observing that in any schedule, two consecutive jobs on the

same machine can be swapped without affecting the rest of the schedule.

t time

i j.
xti,j = 1

j i.
x
t−pi+pj
j,i = 1

Costij : c+ fi(t) + fj(t+ pj)

Costji : c+ fi(t+ pj) + fj(t− pi + pj)

Figure 3.6: Swap of Two Consecutive Jobs

Figure 3.6 shows the effect that the swap have on the overall cost of the schedule, being

c the cost of all jobs but i and j. When Costij > Costji, x
t+pi−pj
j,i can be eliminated, and when

37

Costij < Costji, xti,j can be eliminated. When both configuration have the same cost, any of the

two variables can be eliminated without losing the optimal solution (one must ensure that such

eliminations follow a consistent tie-breaking criterion).

For example, the variable x10
7,3 can be eliminated in solution (3.2) (arc ((7,6),(3,10)) in

Figure 3.5) since cost cost7,3 = cost3,7 in this case. This elimination, together with the elimina-

tion of x10
2,3 would improve the linear relaxation of ATIF.

The second elimination approach does not have effect for non decreasing cost functions,

which is the case for the weighted tardiness problem. It considers if the last job on a machine

can be postponed without increasing the overall cost, creating some machine idle time before it

begins. Figure 3.7 shows the effect of the postponement.

t time

Costjt+1 : c+ fj(t+ 1)

j. . .
x
t−pj+1
0,j = 1

Costjt : c+ fj(t)

j. . .
xtj,0 = 1

Figure 3.7: Postponement of the Last Job

When Costjt > Costjt+1, xtj,0 can be eliminated, and when Costjt < Costjt+1, xt−pj+1
0,j

can be eliminated. When both configuration have the same cost, any of the two variables can be

eliminated without losing the optimal solution (consistent tie-breaking is also required here).

Following the idea represented in figure 3.5, we define a pseudo-schedule as a path from

(0, 0) to (0, T) in G. In it, four pseudo-schedules compose the fractional solution. Each pseudo-

schedule represents the part of the schedule to be processed on one machine.

Let P be the set of all possible pseudo-schedules. For every pseudo-schedule p ∈ P ,

define a variable λp and a set of constants {qtpa |at ∈ A} to indicate if an arc at appears in p.

Define f0(t) as zero for any t. The ATIF formulation can then be reformulated as

38

Minimize
∑

(i,j)t∈A

fj(t+ pj)x
t
ij (3.4a)

Subject to
∑
p∈P

qtpa λp − xta = 0 (∀ at ∈ A) (3.4b)

∑
(j,i)t∈A

xtji = 1 (∀ i ∈ J) (3.4c)

∑
(0,j)0∈A

x0
0j = m (3.4d)

λp ≥ 0 (∀ p ∈ P) (3.4e)

xta ∈ Z+ (∀ at ∈ A). (3.4f)

Formulation (3.4), containing both λ and x variables, is said to be in the explicit format,

as defined by Marcus Poggi de Aragão (2003). Using the redundant equations (3.4b) to eliminate

x, and relaxing the integrality, the Dantzig-Wolfe Master (DWM) LP is written as:

Minimize
∑
p∈P

(
∑

(i,j)t∈A

qtpij fj(t+ pj))λp (3.5a)

Subject to
∑
p∈P

(
∑

(j,i)t∈A

qtpji)λp = 1 (∀ i ∈ J) (3.5b)

∑
p∈P

(
∑

(0,j)0∈A

q0p
0j)λp = m (3.5c)

λp ≥ 0 (∀ p ∈ P) (3.5d)

(3.5e)

Any generic constraint l of format
∑

at∈A α
t
alx

t
a ≥ bl can be included in the DWM by

converting the x variables to λ by using the same substitution (3.4b). This is needed for all the

cuts used, since they were defined in terms of x.

Since the number of λ variables is exponential on n, in order to solve DWM, these

variables are generated on demand. For that, given an optimal solution to (3.5) restricted to a

subset of the λ variables, and its dual, the pricing subproblem consists of finding the variable λp

with minimum reduced cost. If such a reduced cost is negative, then λp is added to the restricted

master problem and the process continues. Otherwise, the current solution is also optimal for

39

the complete DWM.

To efficiently compute the optimal λp variable, its reduced cost is expressed as the sum

of the reduced costs of the arcs of p, which are defined in the following.

Suppose that, at a given instant, there are r + 1 constraints in the DWM. Let π0 be the

dual variable of constraint 3.5c, πi be the dual variable of constraints (3.5b) for i ∈ J , and πl,

n < l ≤ r, be the dual variable of any additional constraint. Being αtal the coefficient of variable

xta in constraint l, the reduced cost of arc at = (i, j)t is defined using the α as:

c̄ta = fj(t+ pj)−
r∑
l=0

αtalπl. (3.6)

3.4.1 EXTENDED CAPACITY CUTS

The BCP-PMWT uses two families of cuts to strengthen the ATIF. The first one, called

the Extended Capacity Cuts (ECC) is defined as follows. Let S ⊆ J be a set of jobs, and define

p(S) =
∑

j∈S pj as the total processing time of S, δ−(S) = {(i, j)t ∈ A : i /∈ S, j ∈ S} and

δ+(S) = {(i, j)t ∈ A : i ∈ S, j /∈ S}, being A the set of arcs (i, j)t. Equation (3.7) below is

valid.

∑
at∈δ+(S)

txta −
∑

at∈δ−(S)

txta = p(S) (3.7)

Uchoa et al (2006) call it the Capacity-Balance Equation over S and define an Extended

Capacity Cut (ECC) over S as any inequality valid for P (S), the polyhedron given by the con-

vex hull of the 0-1 solutions of (3.7). Furthermore, an Homogeneous Extended Capacity Cut

(HECC) over S is an ECC where all variables with the same time index have the same coeffi-

cients.

Dash et al (2010) present a deep study of the polythedron, which they call the Master

Equality Polyhedron (MEP), defined as:

K(n, q) = conv

{
(x, y) ∈ Zn+ × Zn+ :

n∑
i=1

ixi −
n∑
i=1

iyi = q

}
(3.8)

where n, q ∈ Z and n > 0. In our case, n = |J | and q = p(S).

Another family of cuts, the Rounded Homogeneous Extended Capacity Cuts (RHECC),

inequality (3.9), is obtained by multiplying a HECC by a value r ∈ [0, 1] and applying integer

rounding.

40

∑
at∈δ+(S)

drtexta −
∑

at∈δ−(S)

brtcxta ≥ drp(S)e (3.9)

Uchoa et al (2006) proved that for any multiplier r′ ∈ R, there exists a dominating

multiplier r = a/b, where 0 ≤ a ≤ b ≤ T . The sequence of all irreducible rational numbers

a/b, 0 ≤ a ≤ b ≤ n arranged in increasing order is called a Farey Sequence of order n (Fn).

Then, any violated RHECC will have r ∈ FT .

Each cut is defined by the set S and a multiplier r = a/b. Figure 3.8 represents one

choice of S over a possible solution for a 9 jobs instance. To illustrate how separating RHECC’s

can be difficult, consider one of the tackled instances, namely wt100-2m-1, which has T =

2.806, leading to |FT | = 2.393.846 (≈ 1021). Combining it to 2100 − 1 (≈ 1030) possible

choices of an S set over 100 jobs, we have a search space of approximately 1051 RHECC’s.

01
2 3

4
5

6
7

8 9

S
δ+

δ−

Figure 3.8: RHECC Support Graph

To separate RHECCs, the BCP-PMWT used a simple depth-first search, as explained in

Uchoa et al (2006).

As noted by Uchoa et al (2006), instead of integer rounding, other subadditive functions

can be used to get stronger cuts. An interesting alternative is to add a scalar s ∈ [0, 1] to each

left hand side coefficient, as in 3.10. This approach is not explored in that, nor this work.

∑
at∈δ+(S)

drt+ sexta −
∑

at∈δ−(S)

brt+ scxta ≥ drp(S)e (3.10)

3.4.2 BRANCH-CUT-AND-PRICE

The pricing subproblem in the BCP-PMWT algorithm consists of finding the pseudo-

schedule p with the minimum reduced cost for its corresponding variable λp. This can be done

41

by finding the shortest path from (0, 0) to (0, T) in the previously defined graph G = (V,A),

setting each arc a = ((i, i− pi), (j, t)) length to c̄ta.

Being F (j, t) the minimum reduced cost subpath that starts at (0, 0) and finishes at (j, t),

the following dynamic programming recursion was then used to find the lowest reduced cost

column:

F (j, t) =


0, if j = 0 and t = 0;

∞, if @ i : (i, j)t ∈ A;

mini:(i,j)t∈A{F (i, t− pi) + c̄tij}, otherwise.

If F (0, T) < 0, the corresponding pseudo-schedule λp column can be added to the

Dantzig-Wolfe Restricted master problem.

After every 5 column generation iterations, variable fixing by reduced costs was per-

formed. It consists of checking, for each variable strictly less than one, if setting it to one will

take the solution cost past the best know integer solution. This helps to reduce the number of

arcs in A, therefore speeding the pricing and improving convergence. The relaxation bounds

may also be improved.

For the best know solution, used for variable fixation and for pruning the tree, when

solving P ||
∑
wjTj , the BCP-PMWT used the values of Rodrigues et al (2008) heuristic.

Branching was performed by choosing a vertex j ∈ J and partitioning the variables xtij

(those entering j) into two sets S1 and S2 such that
∑

(i,j,t)∈S1
x̄tij and

∑
(i,j,t)∈S2

x̄tij are close to

0.5. The variables in S1 are fixed to zero in the left child node; variables in S2 are fixed to zero

in the right child node. Strong branching was performed by testing eight possible choices of sets

before each branch.

When the number of arcs in A after solving the root node was below 200,000, addition-

ally to the BCP, the current reduced ATIF was fed to a commercial MIP solver (CPLEX 11.1).

Such approach had good results, since the formulation was reasonably tractable and modern

MIP solvers have many advanced features for better exploring the search tree.

3.5 TRIANGLE CLIQUE CUTS

Following the approach of Pessoa et al (2009) on a BCP algorithm for the Heteroge-

neous Fleet Vehicle Routing Problem, the Triangle Clique cuts were used to improve the ATIF

relaxation in the BCP-PMWT-OTI.

42

Given a set S ⊂ J , with exactly three elements, let G = (V , E) be the compatibility

graph where each vertex in V represents an arc at = (i, j)t, i, j ∈ S and each edge e = (at11 , a
t2
2)

belongs to E if and only if at11 and at22 are compatible. For each i, j, k ∈ S, there are 4 cases:

Case 1: if e = ((i, j)t1 , (i, k)t2), then e 6∈ E

Case 2: if e = ((i, j)t1 , (k, j)t2), then e 6∈ E

Case 3: if e = ((i, j)t1 , (j, k)t2) and t2 6= t1 + pj , then e 6∈ E

Case 4: if e = ((i, j)t1 , (j, k)t2) and t2 = t1 + pj , then e ∈ E

In general terms, what each case represents is:

Case 1: a job cannot end more than once

Case 2: a job cannot start more than once

Case 3: a job cannot be processed for less or more time than its processing time pj

Case 4: a job can be processed exactly for its processing time pj

For each independent set I ⊂ V , a triangle clique is defined by inequality (3.11).

∑
at∈I

xta ≤ 1 (3.11)

3.5.1 SEPARATING ALGORITHM

A simple algorithm is used for finding all trianqle clique for a given solution. As noted

by Pessoa et al (2009), G is a set of chains. Since by preliminary computation it was observed

that chains of four or more elements don’t occur frequently, we only consider chains with up to

three elements to use a faster separating algorithm. Figure 3.9 illustrates the 3 configurations of

chains that may be present in the graph.

43

. . .

Case 1:

Case 2:

Case 3:
xti,j x

t+pj
j,k x

t+pj+pk
k,i

xti,j x
t+pj
j,k

xti,j

Figure 3.9: Triangle Clique Compatibility Graph (G)

The algorithm consists in building the graph for every triple of jobs (i, j, k) and searching

the maximum-weight independent set by enumeration. Since each chain is independent from all

others, the maximum-weight independent set will be the union of each single chain maximum-

weight independent set. Considering figure 3.9, the maximum weight for each possible chain

case is:

Case 1: xti,j;

Case 2: max{xti,j, x
t+pj
j,k };

Case 3: max{xti,j + x
t+pj+pk
k,i , x

t+pj
j,k }.

Figure 3.10 represents the compatibility graph of a fractional solution where i = 2, j =

4, k = 23 and pi = 46, pj = 16, pk = 93. A violated TCC for this example is

x270
2,4 + x288

4,23 + x268
2,4 + x279

4,23 + x264
2,4 + x288

2,4 + x262
2,4 +

+ x287
2,4 + x287

2,4 + x258
2,4 + x283

2,4 + x214
23,2 + x276

4,23 < 1.

44

x258
2,4 = 0.020 x274

4,23 = 0.020

x214
23,2 = 0.233 x260

2,4 = 0.233 x276
4,23 = 0.193

x262
2,4 = 0.495 x278

4,23 = 0.173

x264
2,4 = 0.056 x280

4,23 = 0.056

x268
2,4 = 0.005 x284

4,23 = 0.005

x270
2,4 = 0.071 x286

4,23 = 0.071

x283
2,4 = 0.022

x287
2,4 = 0.022

x288
2,4 = 0.018

x279
4,23 = 0.015

x288
4,23 = 0.006

Figure 3.10: Example Compatibility Graph (G)

45

4 PROPOSED IMPROVEMENTS

This chapter presents the new improvements incorporated into the BCP-PMWT algo-

rithm, resulting in the BCP-PMWT-OTI. The outline of this chapter is as follows.

Section 4.1 presents a polyhedron used to derive the new family of cuts. Section 4.2

presents the new family of cuts, the Overload Elimination Cuts (OECs). Section 4.3 outlines the

genetic algorithm used to separate OECs. Section 4.4 shows how the time-indexed formulation

can be used to finish the optimization once the number of fixed variables allows for a reasonable

sized projection of the ATIF onto the TIF.

4.1 THE CAPACITY PATH POLYHEDRON

In order to derive a new family of cuts, in this section, a specialization of the Capacity

Balance Polyhedron is presented. Let S ⊆ J be a set of jobs, p(S) =
∑

j∈S pj be the total

processing time of S and J+ = J ∪{0}. We define the aggregated variables yt and zt for a given

S as follows:

yt =
∑
j∈S

∑
i∈(J0\S)

xtj,i (4.1)

zt =
∑
j∈S

∑
i∈(J0\S)

xti,j (4.2)

The capacity path polyhedron, P (S,m) is the convex hull of all integer solution of (4.3).

46

T∑
t=1

yt −
T−1∑
t=0

zt = 0 (4.3a)

T∑
t=1

t yt −
T−1∑
t=0

t zt = p(S) (4.3b)

q∑
t=1

yt −
q−1∑
t=0

zt ≤ 0 (q = 1, . . . , T − 1) (4.3c)

q∑
t=0

zt −
q−1∑
t=1

yt ≤ m (q = 1, . . . , T − 1) (4.3d)

0 ≤ yt ≤ m (t = 1, . . . , T) (4.3e)

0 ≤ zt ≤ m (t = 0, . . . , T − 1) (4.3f)

What P (S,m) differs from P (S) is that solutions for the first configures multiple paths

entering and leaving the set S to satisfy the demand p(S), with the number of paths inside S not

exceeding m at any moment, while solutions for the second configures multiple paths entering

and/or leaving the set S to satisfy the demand p(S), with no restrictions on the number of paths

and no association among entering and leaving paths.

4.2 OVERLOAD ELIMINATION CUTS

For m ≥ 2 and t ∈
{

1, . . . ,

⌊
p(S)− 1

m

⌋
+ 1

}
we have the following inequality, that we

call overload elimination constraint (OEC):

t1∑
q=t

yq +
T∑

q=t1+1

2 yq −
T−1∑

q=max{t1,
T−p(S)+m(t−1)+1}

zq ≥ 2, t1 = p(S)− t− (m− 2)(t− 1) (4.4)

For didactic purposes, we first prove that the OEC is valid for m = 2. The proof for the

general case is similar.

Theorem 4.1. The OEC inequality is valid for m = 2, S ⊆ J and t ∈ {1, . . . , bp(S)/2c}.

Proof As m = 2, at least one and at most two paths crosses the set, each entering and exiting it

maybe more than once. Let tiz and tiy be the last time path i enters and exits the set S, respectively.

We can assume, w.l.o.g., that t1y ≤ t2y. Since all jobs in S must be processed by the two machines,

47

t1y + t2y ≥ p(S). Considering paths with t1z = t2z = 0, we have 2 possible sets of solutions

(illustrated in figures 4.1 and 4.2):

Case 1: t1y ≥ t

As t1y + t2y ≥ p(S), we can infer that t2y ≤ p(S) − t. So, both paths would exit S in the

interval [t, p(S)− t]. Resulting in a left hand side of 2 for (4.4).

Case 2: t1y < t

As t1y + t2y ≥ p(S), we can infer that t2y > p(S)− t which is the same as t2y ≥ p(S)− t+ 1.

So, one path would exit S in the interval [0, t[and the other in the interval [p(S)−t+1, T].

Resulting again in a left hand side of 2 for (4.4).

Note that cases t1y > p(S)− t and t2y < t are impossible when t1z = t2z = 0. The smallest

t2y and greatest t1y values occur when t2y = t1y = p(S)/2, for an even value of p(S).

Define C1 and C2 as the amount of p(S) processed by machines 1 and 2 before t1z and t2z,

respectively. Cases 1 and 2 have C1 = C2 = 0.

To complete the proof we need to show that the inequality still is not violated when t1z > 0

or t2z > 0. It is true that for each possible solution considered in cases 1 and 2, if we increase

t1z or t2z, its corresponding tiy also increases, resulting in equal or greater coefficients for the y

portion of the inequality. So, when both t1z and t2z are less than max{p(S)−t, T−p(S)+2t−1},

the inequalities are valid. For simplicity, let us assume now that t1z ≤ t2z (and not necessarily

t1y ≤ t2y).

Case 1: t2z < max{p(S)− t, T − p(S) + 2t− 1}

Valid, as stated above.

Case 2: t2z ≥ max{p(S)− t, T − p(S) + 2t− 1}

As t2z ≥ p(S)− t, t2y will be strictly greater than p(S)− t. And as t2z ≥ T − p(S) + 2t− 1,

we have t2y − t2z ≤ p(S)− 2t + 1, this means that at least 2t− 1 have to be processed by

machine 1 or the first portion of machine’s 2 path. By that, we can infer that at least one

arc will exit S at time t or later, as illustrated in figure 4.3. Resulting in a left hand side of

at least 2 for (4.4). For the case where the paths enter more than once at time greater than

or equal to t1, one more exit is required for each additional entrance increasing the y side

of the inequality by 2, resulting in a net increase of 1 per entrance

48

0 p(S)

2

p(S) T

S
T

t p(S)− t T − p(S) + 2t− 1

−1z

+1y +2y

t1z
t1y

t2z t2y

Figure 4.1: OEC’s Validity Proof - Case 1 when m = 2 and tiz = 0

0 p(S)

2

p(S) T

S
T

t p(S)− t T − p(S) + 2t− 1

−1z

+1y +2y

t1z
t1y

t2z t2y

Figure 4.2: OEC’s Validity Proof - Case 2 when m = 2 and tiz = 0

49

0 p(S)

2

p(S) T

S
T

t p(S)− t T − p(S) + 2t− 1

−1z

+1y +2y

C2

t1z
t1y

t2z t2y

Figure 4.3: OEC’s Validity Proof - Case 2 when m = 2 and tiz ≥ 0

Now, we give the proof of the validity of OEC for the general case.

Theorem 4.2. The OEC inequality is valid in the general case for S ⊆ J and

t ∈
{

1, . . . ,

⌊
p(S)− 1

m

⌋
+ 1

}
.

Proof At least one and at most m paths crossing the set, each entering and exiting it maybe

more than once. Let tiz and tiy be the last time path i enters and exits the set S, respectively. We

can assume, w.l.o.g., that ti−1
y ≤ tiy, i = 2, . . . ,m. Since all jobs in S must be processed by the

m machines,
m∑
i=1

tiy ≥ p(S). Considering paths with t1z = t2z = . . . = tmz = 0, we have 2 possible

set of solutions:

Case 1: tm−1
y < t

In this case,
m−1∑
i=1

tiy ≤ (m − 1)(t − 1), so tmy ≥ p(S) − (m − 1)(t − 1) = t1 + 1 and the

cut is valid since yt
m
y has coefficient 2.

Case 2: tm−1
y ≥ t

In this case, the cut is valid since both yt
m−1
y and yt

m
y have coefficient greater than or equal

to 1.

Define Ci as the amount of p(S) processed by machines Mi before time tiz. Cases 1 and

2 have C1 = C2 = . . . = Cm = 0.

50

To complete the proof we need to show that the inequality still is not violated when

tiz > 0, for i = 1, . . . ,m. It is true that for each possible solution considered in cases 1 and

2, if we increase at least on tiz, its corresponding tiy also increases, resulting in equal or greater

coefficients for the y portion of the inequality. So, when tiz is less than max{t1, T − p(S) +

m(t− 1) + 1}, for i = 1, . . . ,m the inequalities are valid. For simplicity, let us assume now that

ti−1
z ≤ tiz, i = 2, . . . ,m (and not necessarily ti−1

y ≤ tiy, i = 2, . . . ,m).

Case 1: tmz < max{t1, T − p(S) +m(t− 1) + 1}

Valid, as stated above.

Case 2: tmz ≥ max{t1, T − p(S) +m(t− 1) + 1}

As tmz ≥ t1, tmy will will be strictly greater than t1. And as tmz ≥ T − p(S) +m(t− 1) + 1,

we have tmy − tmz ≤ p(S)−m(t− 1)− 1, this means that at least m(t− 1) + 1 have to be

processed by machine 1, . . . ,m − 1 or the first portion of machine’s m path. By that, we

can infer that at least one arc will exit S at time t or later. Resulting in a left hand side of

at least 2 for (4.4). For the case where the paths enter more than once at time greater than

or equal to t1, one more exit is required for each additional entrance increasing the y side

of the inequality by 2, resulting in a net increase of 1 per entrance.

The term Overload Elimination comes from the fact that the inequality could only be

violated by an integer solution if, hypothetically, some machine was overloaded to allow one or

more jobs of S to finish prematurely before t. In light of fractional solutions, such premature

finish occurs when a fraction of a job finishes before t. Figure 4.4 represents an OEC (S =

{1, 2, 3, 5, 6, 7} and t = 13) for a fractional solution of the 8 jobs instance presented previously,

and figure 4.5 represents the same OEC for an integer solution of the same instance. Such integer

solution was found after applying the violated OEC to solve the linear relaxation.

51

0 p(S)

2

p(S) = 28

S

t = 13

p(S)− t = 15
T − p(S) + 2t− 1 = 21

−1z

+1y +2y

z0

y10 y12 y15 y19

z0 = 2

y10 = 0.5

y12 = 0.5

1.5 ≥ 2 (OEC Violated)

y15 = 0.5

y19 = 0.5

Figure 4.4: Example OEC for a Fractional Solution

0 p(S)

2

p(S) = 28

S

t = 13

p(S)− t = 15
T − p(S) + 2t− 1 = 21

−1z

+1y +2y

z0

y10 y15

z0 = 2

y13 = 1

y15 = 1

2 ≥ 2 (OEC Valid)

Figure 4.5: Example OEC for an Integer Solution

4.3 THE GENETIC ALGORITHM FOR CUT SEPARATION

Here we present the details of the genetic algorihtm used to separate OEC’s. In this

section, the term solution and individual will be used interchangeably to denote a cut, being it

violated or not.

Each chromosome encodes a single OEC. To codify it, a sequence of n bit for represent-

ing S, followed by an integer representing t is used. Figure 4.6 shows the chromosome for a 10

52

jobs instance, being S = {1, 3, 10} and t = 13.

1 0 1 0 0 0 0 0 0 1 13

Figure 4.6: Example OEC Chromosome Codification

Define Ḡ = (V̄ , Ē) as an (undirected) support graph for the fractional solution x̄, such

as V̄ = J and Ē = {(i, j) : ∃ t | x̄ti,j > 0 or x̄tj,i > 0}. Also, define C̄ as the average completion

time for jobs j ∈ J , calculated as

C̄j =
∑

(i,t)|x̄tj,i>0

t x̄tj,i, (4.5)

F̄ (k) as the set of jobs with the k smallest values of C̄, and F̄j as the job with the j-th smallest C̄

job. The set F̄ (k) can be interpreted as the first k jobs to finish, and F̄j as the j-th job to finish,

in a fractional schedule.

The genetic algorithm generates an initial population of n solutions and selects the

nPopulation best ones (assuming nPopulation ≤ n). Then, a number of crossover and se-

lection operations are performed iteratively until some stopping criteria is met. For every new

individual, being generated either by the initial population or the crossover operation, local

search is performed to improved it. Algorithm 2 outlines the genetic algorithm, where the input

parameters are the size of the population to be generated initially and to be carried from one gen-

eration to the next (nPopulation), the crossover rate (crossoverRate), which is the percentage

of the population to be generated at each generation by crossover, and the criteria to stop the

algorithm (stopCriteria).

Preliminary tests showed that most of the violated cuts had its set S inducing a connected

subgraph in Ḡ. Due to that, each individual in the initial population is generated by calling

algorithm 3, which randomly generates sets with this property. For shortness, in this section, we

refer to such sets as connected S sets.

The selection operator consists of eliminating the worst individuals so that the popula-

tion is back to its initial size. However, a pool of violated cuts is kept apart from the current

population. No cut is removed from this pool.

53

Algorithm 2: Separation Genetic Algorithm

Input: nPopulation, crossoverRate, stopCriteria()
Output: V iolatedcuts
violatedCuts← []
for k ← 1 to n do

for j ← 1 to k do
Individual ← generateInitialIndividual(k, j, C̄, supportGraph)
if V iolated(Individual) then

violatedCuts← violatedCuts+ Individual
end
Population← Population+ Individual

end
end
Population← Selection(Population, nPopulation)
while not stopCriteria() do

for i← 1 to nPopulation× crossoverRate do
father ← random individual from Population
mother ← random individual from (Population− father)
child← crossover(father,mother)
if V iolated(child) then

violatedCuts← violatedCuts+ child
end
Population← Population+ child

end
Population← Selection(Population, nPopulation)

end
return violatedCuts

To generate a single initial solution, we search for the largest connected S ⊂ F̄ (k)

including F̄j (root node). We do so by performing breadth-first search on the subgraph of Ḡ

induced by F̄ (k), starting from the F̄j . Algorithm 3 represents this procedure, where the inputs

parameters are the size k of set F̄ (k), the rank j of job F̄j , the average completion times C̄, and

the support graph.

Algorithm 3: Generation of Initial Individuals

Input: k, j, C̄, supportGraph
Output: Individual
G̃← supportGraph induced by F̄ k
Individual.S ← BreadthF irstSearch(G̃, F̄j)
return localSearch(Individual)

The crossover operator consists in deriving a new solution from two solutions chosen

randomly from the population. We call the new solution as child and the existing solutions as

parents, or as father and mother. To generate the child, we first select all elements that are in

54

both parents. If this intersection is empty, a random element is chosen from each parent and

based on Ḡ, we select the least amount of nodes that will induce a connected subgraph. Then,

some elements contained in the parents are included in S at random. If the resulting S does

not induce a connected subgraph in Ḡ, a random element from S, called root, is chosen and all

elements of S not reachable in Ḡ from root are eliminated, so that the remaining S induces a

connected subgraph. Algorithm 4 outlines the described crossover procedure.

Algorithm 4: Crossover Operator

Input: father,mother, supportGraph
Output: child
if | father.S ∩mother.S |> 0 then

child.S ← father.S ∩mother.S
else

child.S ← (random element of father.S) ∪ (random element of mother.S)
child.S ← connectS(child.S, supportGraph)

end
foreach j ∈ ((father.S ∪mother.S)− child.S) do

with 50% chance of ocurring, child.S ← child.S ∪ j
end
child.S ← a random connected component of child.S
return localSearch(child)

Figure 4.7 illustrates the connectS() and eliminateDisconnection() procedures. In

figure 4.7(a), elements 8, 10 and 11 were removed from S, remaining 1, 2, 3 and 4. In figure

4.7(b), element 6 was included in S so that edges (4,6) and (6,8) connects the two disconnected

subgraphs.

55

1

2

3

4

5 6

7

8

9

10

11

12

Root 0

(a) connectS()

1

2

3

4

5 6

7

8

9

10

11

12

0

(b) eliminateDisconnection()

Figure 4.7: Example of Procedures for Generating Connected Subgraphs

The local search operator, represented in algorithm 5, consists of performing every single

element insertion and deletion on S until no movement yields a better cut. For every change,

the violation is calculated for every valid value of t and we pick the one generating the bigger

violation. Function V iolation() returns a negative value when the cut is not violated, its absolute

value is the constraint slack in such cases.

56

Algorithm 5: Local Search Operator

Input: Individual
Output: Individual
foreach j ∈ J do

if j ∈ Individual.S then
S ← Individual.S − j

else
S ← Individual.S + j

end
tbest = 1
foreach t ∈ validT imePeriods(S,m) do

if V iolation(OEC(S, t)) > V iolation(OEC(S, tbest)) then
tbest ← t
if V iolation(OEC(S, t)) is significant then

solutionPool← solutionPool +OEC(S, t)
end

end
end
if V iolation(OEC(S, tbest) > V iolation(Individual)) then

Individual ← OEC(S, tbest)
end

end
return Individual

No mutation operator was used in the final version of the genetic algorithm.

Based on preliminary tests we set the population size to 20, the rate of crossover of

100%, that is, 20 crossover operations per generation, and the stop criteria to the completion of

100 generations.

Initially, this genetic algorithm was applied to separate RHECC cuts. But since its per-

formance was not better than the greedy algorithm used by Pessoa et al (2010), it was not used.

4.4 TIME-INDEXED FORMULATIONS

When investigating different formulations for a problem, the usual purpose is to find

the one that yields the best bounds. In this section, we explore different ways of describing

the exactly same polyhedron and discuss how they may influence the MIP solver. We believe

that two characteristics of a formulation can improve the MIP solver performance. The first is

how sparse is the constraint matrix, due to the faster computation of the simplex iterations. The

second is the impact of fixing one variable over the linear relaxation bound, due to a stronger

branching performance.

When modeling scheduling problems, there are basically two characteristics to be con-

57

strained, one is that every job has to be processed, and the other is that no more thanmmachines

are active at any moment. The first two formulations, (4.6) and (4.7), use binary variables ytj

indicating job j has finished at time t, and differ in how the machine constraints are enforced.

The first does it by a network flow, where m flow units leave the source (4.6c) and no flow may

leave other nodes (4.6d). The second does it by explicitly restricting how many jobs are being

processed at each period t (4.7c), which is also referred to as resource constraints.

Minimize
∑
j∈J

T∑
t=pj

fj(t) y
t
j (4.6a)

Subject to
T∑

t=pj

ytj = 1 (j ∈ J) (4.6b)

∑
j∈J

y
pj
j = m (4.6c)

∑
j∈J |t≥pj

ytj ≥
∑
j∈J

y
t+pj
j (t = 1, . . . , T) (4.6d)

ytj ∈ {0, 1} (j ∈ J ; t = pj, . . . , T) (4.6e)

Minimize
∑
j∈J

T∑
t=pj

fj(t) y
t
j (4.7a)

Subject to
T∑

t=pj

y
pj
j = 1 (j ∈ J) (4.7b)

∑
j∈J

min{t+pj−1, T}∑
t′=t

yt
′

j ≤ m (t = 1, . . . , T) (4.7c)

ytj ∈ {0, 1} (j ∈ J ; t = pj, . . . , T) (4.7d)

Let ztj be a binary variable indicating job j has finished until time t. By using the substi-

tution ytj = ztj−zt−1
j , we transform formulations (4.6) and (4.7) into (4.8) and (4.9), respectively.

The main difference is how fixing one variable influences the other variables. For example, by

setting zt1j = 1, every ztj with t > t1 is also set to 1, and, by setting zt1j = 0, every ztj with t < t1

is also set to 0. This leads to a more effective branching, since both fixations usually change the

relaxed solutions substantially.

58

Minimize
∑
j∈J

T∑
t=pj

fj(t)
(
ztj − zt−1

j

)
(4.8a)

Subject to
∑
j∈J

(
z
pj
j − z

pj−1
j

)
= m (4.8b)

∑
j∈J |t≥pj

(
ztj − zt−1

j

)
≥
∑
j∈J

(
z
t+pj
j − zt+pj−1

j

)
(t = 1, . . . , T) (4.8c)

zt−1
j ≤ ztj (j ∈ J ; t = pj, . . . , T) (4.8d)

z
pj−1
j = 0 (j ∈ J) (4.8e)

ztj ∈ {0, 1} (j ∈ J ; t = pj, . . . , T − 1) (4.8f)

zTj = 1 (j ∈ J) (4.8g)

Minimize
∑
j∈J

T∑
t=pj

fj(t)
(
ztj − zt−1

j

)
(4.9a)

Subject to
∑
j∈J

(
z

min{t+pj−1, T}
j − zt−1

j

)
≤ m (t = 1, . . . , T) (4.9b)

zt−1
j ≤ ztj (j ∈ J ; t = pj, . . . , T) (4.9c)

z
pj−1
j = 0 (j ∈ J) (4.9d)

ztj ∈ {0, 1} (j ∈ J ; t = pj, . . . , T − 1) (4.9e)

zTj = 1 (j ∈ J) (4.9f)

In the next chapter, we detail how computational tests will be performed to compare the

different formulations in terms of performance.

4.4.1 TIME-INDEXED CUTS BY PROJECTION OF THE ARC-TIME-INDEXED FOR-

MULATION

As proved by Pessoa et al (2010), the TIF is dominated by the ATIF, meaning that the

ATIF linear relaxation will always yield a better or equal lower bound when compared to the

TIF linear relaxation over the same instance. We then devise a procedure to generate cuts from

the projection of the ATIF to the TIF. These cuts take further advantage of the variable fixing

performed by BCP-PMWT over the ATIF variables.

59

We define a fractional solution of the TIF as y∗ and the set of remaining arcs At from the

ATIF, for each time period t, as below.

At =
{

(i, j) ∈ J × J | xti,j is not fixed
}

(4.10)

From the flow time-indexed formulation (4.6), the following inequality is valid in the y

variable space, ∑
i∈J

yti ≥
∑
j∈J

y
t+pj
j (t = 1, . . . , T). (4.11)

This inequality can be interpreted as the association of each variable yt+pjj equal to one

variable yti also equal to one, meaning that job j is the successor of job i on some machine.

Since, by the ATIF (and the variable fixing), not all such successions are allowed, additional

cuts are derived from At.

∑
i:∃j∈S|(i,j)∈At

yti ≥
∑
j∈S

y
t+pj
j (S ⊂ J ; t = 1, . . . , T) (4.12)

For a given time period t, exact separation of (4.12) can be done by finding the minimum

cut, or maximum flow, on a digraph built as follows. We lay one source node (s) and one sink

node (t), n nodes {1, 2, ..., n} and other n nodes {1′, 2′, ..., n′}. For each variable y∗ti 6= 0 we

draw an arc connecting the source node to the node i with capacity cs,i = y∗ti. For each variable

y∗
t+pj
j 6= 0 we draw an arc connecting the node j′ to the sink with capacity cj′,t = y∗

t+pj
j .

Finally, for each non-fixed variable xti,j such that y∗ti 6= 0, we draw an arc from i to j′ with

capacity ci,j′ = ∞. After calculating the minimum cut, the set S will be all nodes i′ in the sink

side of the cut. Figure 4.8 shows how the graph is constructed.

s

1

2

n

1’

2’

n’

t

∞

∞

∞

y∗ti

xti,j
y∗
t+pj
j

i j

Figure 4.8: Support graph for separation of cuts derived from ATIF

This procedure can by viewed as a way to check if a solution in the y variables space

is feasible in the x variables space by searching for a "broken path". Figure 4.9 shows the

60

separation support graph for the TIF linear relaxation of the example instance of 8 jobs presented

in section 3.3. In it, for t = 8, we have variables y8
3 = 0.5, y11

3 = 0.5 (p3 = 3) and in the x

variables space, A8 = {(3, 1), (3, 4), (3, 6), (3, 8) , (7, 3), (7, 4), (7, 8), (8, 4)}. It can be seen in

the graph that no path exists from the source to the sink going through i = 3.

s

t

1 2 3 4 5 6 7 8

1’ 2’ 3’ 4’ 5’ 6’ 7’ 8’

0.5

∞ ∞ ∞ ∞

0.5

Figure 4.9: Projection of cuts for 8 jobs example instance

The set of variables in (4.13) and figure 4.10 shows the TIF linear relaxation solution

for an example instance. We can see in it, that job 3 is preceded by itself, something that is not

feasible in the x variables space, since no variable xti,j such that i = j exists.

y6
1 = 1 y11

3 = 0, 5 y5
5 = 0, 5 y20

6 = 0, 5 y18
8 = 0, 5

y10
2 = 1 y21

4 = 0, 5 y11
5 = 0, 5 y14

7 = 0, 5 y19
8 = 0, 5

y8
3 = 0, 5 y24

4 = 0, 5 y6
6 = 0, 5 y15

7 = 0, 5

(4.13)

61

0 5 10 15 20 24

1

2

3

4

5

6

7

8

Figure 4.10: Gantt chart of example instance TIF linear relaxation solution

For shortness, in the remaining of the work, we will refer to the cuts proposed here

simply as projected cuts.

62

5 COMPUTATIONAL TESTS AND RESULTS

In this chapter, we detail how computational tests were performed and comment its re-

sults. First section evaluate the effectiveness of the Triangle Clique and Overload Elimination

Cuts on improving the ATIF bounds. The second section compares the performance of the

four time-indexed formulations presented in Section 4.4 in order to choose which will be used

to solve the problem. Also, we evaluate the effect of variable fixation and strengthening by

projected cuts. The third and last section summarize the results of the full BCP-PWMT-OTI

algorithm.

The instances of P ||ΣwjTj used were generated by transforming the 1||ΣwjTj instances

of Potts and Wassenhove (1985), found on the OR-Library. As described by Pessoa et al (2010),

for n ∈ {40, 50, 100}, and m ∈ {2, 4}, the first instance for each group of 1||ΣwjTj was picked

(instance numbers ending with 1 or 6) and had its due date dj divided by m.

For the upper bound of each instance, we used the solutions computed by the heuristic

procedure of Kramer and Subramanian (2015). For the sake of better evaluating our attempts

to solve the P ||ΣwjTj problem, we highlight where those values are better than the ones of

Rodrigues et al (2008). Tests are run only on instances not proven optimal by the first ATIF LP

relaxation, i.e., the first linear relaxation lower bound is less than the upper bound given by the

heuristic procedure.

The LP/MILP solver used was IBM ILOG CPLEX 12.5 All tests were run on a Intel Core

i7-3770 PC with a 3.4Ghz clock (using one thread), 12GB of RAM and the Linux operating

system.

63

5.1 SOLVING THE ARC-TIME-INDEXED LINEAR RELAXATION

Table A.1 presents the results for the root relaxation after cut separation for the 106

instances not proven optimal by the primal heuristic and the ATIF LP relaxation. The first three

columns identify the instance (n,m and Instance number), the next column (Heu UB) gives the

upper bound provided by Kramer and Subramanian (2015), the next column gives the ATIF

linear relaxation solution (First LB), then, 2 sets of columns compares the root lower bound,

its corresponding integrality gap and the time it took to solve it, with the values of Pessoa et al

(2010). The integrality gap is calculated as
(

Heu UB−Root LB
Heu UB

)
. By root lower bound, we refer to

the objective vaue of the LP after generating all cuts. When column Gap is empty, an optimal

solution has been found. The best LB value of each row is highlighted in bold.

Table 5.1 summarizes the results of both algorithms in solving the root node. It can be

seen that the increase in lower bound compensates the time expense of separating OEC cuts.

Especially for instances with n = 100 and m = 2, for example, instance (100-2m-81) which

was not solved by BCP-PMWT, was solved at the root using the new cuts.

Table 5.1: Root relaxation and cut separation results

BCP-PMWT BCP-PMWT-OTI

n m Average Gap Average Time Average Gap Average Time

40 2 0.525% 77.98 0.234% 141.56

40 4 0.456% 23.35 0.458% 144.24

50 2 0.379% 256.76 0.330% 403.71

50 4 0.571% 67.81 0.584% 165.06

100 2 0.878% 6297.01 0.121% 10135.56

100 4 0.494% 984.02 0.404% 753.57

5.2 COMPARISON OF DIFFERENT TIME-INDEXED FORMULATIONS

We ran tests for each of the four time-indexed formulations presented in Section 4.4, in

order to compare them. To save time, we constrained the tests to 40 and 50 jobs instances. But

we believe that any conclusions drawn can be assumed true for bigger instances.

To perform the tests, we use a list of unfixed arc-time-indexed variables, generated after

solving the root node. All time-indexed models are then formulated by taking into consideration

64

the fixed arc-time-indexed variables. Each time-indexed variable yti is fixed to zero when all

variables xti,j, j = {0, . . . , n} are also fixed to zero.

Table B.1 shows the test results for 29 instances of 40 and 50 jobs. In it, we refer to

formulations (4.6), (4.7), (4.8) and (4.9) as Fy, My, Fz and Mz respectively. The first three

columns (n,m and Instance number) identify the instance, and the two sets of columns gives the

time for solving the linear relaxation plus all cuts generations (LP Time), and the time the MIP

solver took to solve the TIF formulation strengthened by projected cuts (MIP Time).

Table 5.2 summarizes Table B.1 by giving the average values for the two instance sets,

as well as the number of instances solved in up to 3,600 seconds (# Solved). The averages

consider only the 10 instances solved by all four formulation. It can be observed that the best

choice is formulation Mz, even though solving the linear relaxation sometimes may be faster for

a different TIF, the branching performed by the MIP solver is more effective for Mz.

Table 5.2: Comparison of Alternative Time-Indexed Formulations – Summary

Average LP Time (s) Average MIP Time (s) # Solved

n Fy My Fz Mz Fy My Fz Mz Fy My Fz Mz

40 0.72 0.84 7.17 0.97 63.17 351.97 122.92 58.28 12 10 12 12

50 1.77 1.98 47.08 2.43 53.46 150.26 70.56 16.47 13 11 14 16

Table B.2 shows, for the same instances of the previous test, the effect of fixing variables

in the TIF, based on the state achieved in the ATIF. It can be seen that both the LP Time and MIP

time decreases dramatically. Table 5.3 summarizes B.2. Again, the averages consider only the

19 instances solved in up to 3,600 seconds by all four formulation.

Table 5.3: Effect of Variable Fixation in the Mz Time-Index Formulation – Summary

Average LP Time (s) Average MIP Time (s) # Solved

n Fix. w/ Fix. Fix. w/ Fix. Fix. w/ Fix.

40 0.74 22.54 11.11 561.59 12 10

50 2.04 105.84 11.63 496.61 17 9

Table B.3 shows the projected cuts improvement on the TIF linear relaxation bounds.

There is a huge loss of lower bound when projecting the ATIF into the TIF, even with variable

65

fixation because the RHECC, Triangle Click Cuts and OEC are not translated to the time-indexed

variables. To alleviate this loss, the projected cuts plays an important role. For example, on

instance (100-4m-86), it closes 27.36% of the integrality gap. Without such improvement, the

optimal solution would possibly not be achieved. Table 5.4 summarizes table B.3.

Table 5.4: Effect of Projected Cuts in the Mz Time-Indexed Formulation – Summary

n m
Avg. ATIF

Root Gap

Avg. 1st TIF

LP Gap
Avg. Root Gap Avg. Gap Improv.

100 2 0.121% 0.340% 0.306% 13.55%

100 4 0.404% 0.660% 0.646% 11.20%

It can be seen that both the generation of cuts and the fixing of TIF variables are very

effective, being the latter the most significant. For some instances, the generation of cuts worsen

the Branch and Bound performance due to the LP increase in complexity. We tried to balance

the generation of cuts and this increase of complexity by implementing a rollback procedure, in

which the cut generation stops and the cuts inserted in the last iteration are removed if the time

for solving the strengthened relaxation more than doubles. Also, we try to avoid tailing off by

stopping the cut generation if the objective increases less than 10−3 on 5 sequential iterations.

5.3 SOLVING THE PROBLEM TO INTEGRALITY

Tables C.1 to C.6 present the results of solving the 106 instances by the BCP-PMWT

and the BCP-PMWT-OTI. Each table correspond to a set (m,n) of instances, where the first

column identify the instance. The results for the two algorithms are separated into two sets of

columns, where column Heu UB gives the upper bound used by both the BCP and the MIP

solver to explore the search tree, column Root LB and Root Time gives the lower bound for the

ATIF strengthened with the algorithm’s family of cuts and the time to solve the first LP and all

subsequent cut insertions by CG, columns BCP Time and ATIF/TIF MIP Time gives the time it

took to achieve the integral optimal solution, by BCP from root and by feeding the ATIF/TIF to

the MIP solver. Column Best gives which part of the algorithm achieved the optimal solution

faster and column Overall Time give the overall time (Root Time, Root+BCP Time or Root +

ATIF/TIF MIP Time). We highlight (by bold printed numbers) in column Inst the instances

solved for the first time. In column Heu UB for the BCP-PMWT-OTI, we highlight where the

improved bounds were used, and, in columns Root LB, we highlight the best lower bound for

66

the instance.

For the TIF, we used model Mz (4.9), which proved to be the best choice. When feeding

the MIP solver, the ATIF carries the cuts separated in the root node, and the TIF do not. Each set

(m,n) have 25 instances, the instances proven optimal by the first ATIF LP relaxation are omitted

from the table, but are accounted in the number of Solved instances. Tables 5.5 summarizes the

six tables. All 40 and 50 jobs instances were already solved, but the better lower bounds and the

TIF improved running times. Three instances of the 100-2m set and five instances of the 100-4m

set were solved for the first time. Also, there was an improvement of running time.

Table 5.5: Summary of Results

BCP-PMWT BCP-PMWT-OTI

n m # Solved Avg. Time (s) # Solved Avg. Time (s)

40 50 357.88 50 158.17

50 50 5734.94 50 461.07

100 2 18 22523.81 21 14678.39

100 4 17 34243.36 22 1617.56

Table 5.6 compares the BCP approach to MIP solver approach, for both the BCP-PMWT

and the BCP-PMWT-OTI. It can be noted that in both algorithms, the best approach was the

MIP Solver for most of the instances.

Table 5.6: Summary of Results – BCP-PMWT-OTI Best Procedure

BCP-PMWT BCP-PMWT-OTI

n m Root BCP ATIF MIP Unsolved Root BCP TIF MIP Unsolved

40 38 2 10 0 38 0 12 0

50 33 4 13 0 33 2 15 0

100 2 13 2 3 7 15 2 4 4

100 4 7 5 5 8 7 1 14 3

67

6 CONCLUSION

This work proposed a set of improvements to the BCP algorithm of (Pessoa et al, 2010),

referred as BCP-PMWT throughout the text. The resulting algorithm, referred to as BCP-

PMWT-OTI, included a new family of cuts, proposed and proved valid here, along with a genetic

algorithm for separation. Also, we projected the Arc-Time-Indexed formulation to the Time-

Indexed formulation for solving with a MIP Solver, which we consider the main contribution of

this work. For the 40 instances that could be solved both by feeding the ATIF and the TIF to

the MIP solver, the average time required for solving the TIF decreases 93.74% from the time

required to solve the ATIF, even with the TIF bounds being worse than the ATIF bounds.

The improvements proposed then greatly improved the time to solve the P ||
∑
wjTj

problem, and solved 8 new instances, of 150, leaving 7 instances still not solved.

For future works, a few suggestions are:

• Develop a faster separation procedure for the OECs.

• Explore if this framework of variable fixation on a extended formulation and projection

onto a more tractable one could be applied to other combinatorial optimization problems.

• Explore new branching schemes for the BCP algorithm.

• Translate the RHECCs, Triangle Clique Cuts and OECs to the Time-Indexed Formulation.

68

BIBLIOGRAPHY

ABDUL-RAZAQ, T. S.; POTTS, C. N. Dynamic programming state-space relaxation for single-

machine scheduling. The Journal of the Operational Research Society, v. 39, n. 2, p. 141–152,

1988.

ABDUL-RAZAQ, T.; POTTS, C. N.; VAN WASSENHOVE, L. N. A survey of algorithms for

the single machine total weighted tardiness scheduling problem. Discrete Applied Mathemat-

ics, v. 26, n. 2, p. 235–253, 1990.

DASH, S.; FUKASAWA, R.; GÜNLÜK, O. On a generalization of the master cyclic group

polyhedron. Mathematical Programming, v. 125, p. 1–30, 2010.

DYER, M. E.; WOLSEY, L. A. Formulating the single machine sequencing problem with release

dates as a mixed integer program. Discrete Applied Mathematics, v. 26, n. 2, p. 255–270,

1990.

GANTT, H. Work, Wages, and Profits: Their Influence on the Cost of Living. Library of

American civilization. Engineering magazine, 1910.

GLOVER, F. W.; KOCHENBERGER, G. A. Handbook of Metaheuristics. International Series

in Operations Research & Management Science. Springer US, 2003.

GOLDBERG, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley, 1989.

GRAHAM, R. L.; LAWLER, E. L.; LENSTRA, J. K.; KAN, A. R. Optimization and approxi-

mation in deterministic sequencing and scheduling: a survey. Annals of discrete mathematics,

v. 5, p. 287–326, 1979.

IBARAKI, T. Successive sublimation methods for dynamic programming computation. Annals

of Operations Research, v. 11, n. 1, p. 398–439i, 1987.

69

IBARAKI, T.; NAKAMURA, Y. A dynamic programming method for single machine schedul-

ing. European Journal of Operational Research, v. 76, n. 1, p. 72 – 82, 1994.

KRAMER, A.; SUBRAMANIAN, A. A unified heuristic and an annotated bibliography for

a large class of earliness-tardiness scheduling problems. CoRR, v. abs/1509.02384. URL

http://arxiv.org/abs/1509.02384, 2015.

MARCUS POGGI DE ARAGÃO, E. U. Integer Program Reformulation for Robust Branch-

and-Cut-and-Price Algorithms. In Proceedings of the Conference Mathematical Program in

Rio: A Conference in Honour of Nelson Maculan, v. , p. 56–61 p., 2003.

PESSOA, A.; UCHOA, E.; DE ARAGÃO, M.; RODRIGUES, R. Exact algorithm over an

arc-time-indexed formulation for parallel machine scheduling problems. Mathematical Pro-

gramming Computation, v. 2, n. 3-4, p. 259–290, 2010.

PESSOA, A.; UCHOA, E.; DE ARAGÃO, M. P. A robust branch-cut-and-price algorithm for

the heterogeneous fleet vehicle routing problem. Networks, v. , 2009.

PINEDO, M. L. Scheduling: theory, algorithms, and systems. Springer, 2012.

POTTS, C. N.; WASSENHOVE, L. N. V. A branch and bound algorithm for the total weighted

tardiness problem. Operations Research, v. , 1985.

RODRIGUES, R.; PESSOA, A.; UCHOA, E.; POGGI DE ARAGÃO, M. Heuristic algorithm

for the parallel machine total weighted tardiness scheduling problem. v. , 2008.

TANAKA, S.; ARAKI, M. A branch-and bound algorithm based on lagrangian relaxation for

single machine scheduling. Proceedings of International Symposium on Scheduling, volume

18–20, p. 148–153, 2006.

TANAKA, S.; ARAKI, M. An exact algorithm for the single-machine total weighted tardiness

problem with sequence-dependent setup times. Computers & Operations Research, v. 40, n.

1, p. 344–352, 2013.

TANAKA, S.; FUJIKUMA, S. A dynamic-programming-based exact algorithm for general

single-machine scheduling with machine idle time. Journal of Scheduling, v. 15, n. 3, p.

347–361, 2012.

TANAKA, S.; FUJIKUMA, S.; ARAKI, M. An exact algorithm for single-machine scheduling

without machine idle time. Journal of Scheduling, v. 12, n. 6, p. 575–593, 2009.

http://arxiv.org/abs/1509.02384

70

UCHOA, E.; FUKASAWA, R.; LYSGAARD, J.; PESSOA, A.; DE ARAGÃO, M. P.; AN-

DRADE, D. Robust branch-cut-and-price for the Capacitated Minimum Spanning Tree prob-

lem over a large extended formulation. Mathematical Programming, v. 112, n. 2, p. 443–472,

2006.

WENTGES, P. Weighted dantzig–wolfe decomposition for linear mixed-integer programming.

International Transactions in Operational Research, v. 4, n. 2, p. 151–162, 1997.

WHITLEY, D. A genetic algorithm tutorial. Statistics and Computing, v. 4, n. 2, p. 65–85, 1994.

71

Appendices

72

A ROOT NODE RESULTS

Table A.1: Root relaxation and cut separation results

BCP-PMWT-OTI BCP-PMWT

n m Inst Heu UB First LB Root LB Gap Time Root LB Gap Time

40 2 1 606 583.14 606 126.10 606 63.50

40 2 6 3886 3874.25 3886 56.90 3886 11.80

40 2 11 9617 9591.26 9617 32.60 9617 6.40

40 2 16 38356 38278.10 38356 128.40 38356 41.80

40 2 31 3812 3757.50 3812 89.90 3812 29.20

40 2 36 10713 10661.60 10713 152.00 10713 50.70

40 2 56 1279 1271.86 1279 22.50 1279 8.30

40 2 61 11488 11310.50 11459 0.252% 569.40 11394 0.818% 684.80

40 2 66 35279 35129.40 35203 0.215% 428.50 35197 0.232% 200.60

40 2 71 47952 47934.30 47952 25.50 47952 0.90

40 2 81 571 451.68 571 203.70 571 67.60

40 2 86 6048 5995.50 6048 230.00 6048 31.90

40 2 96 66116 66110.00 66116 15.40 66116 1.20

40 2 111 17936 17897.20 17936 83.80 17936 3.50

40 2 116 25870 25785.30 25870 88.20 25870 44.40

40 2 121 64516 64506.90 64516 12.00 64516 1.00

40 4 1 439 437.60 439 24.70 439 1.70

40 4 6 2374 2371.85 2374 33.00 2374 2.30

40 4 11 5737 5734.78 5737 9.40 5737 0.50

40 4 16 21493 21483.60 21493 368.10 21490 0.014% 19.90

40 4 31 2525 2495.27 2507 0.713% 147.80 2500 0.990% 39.30

40 4 36 6420 6354.94 6368 0.810% 351.80 6364 0.872% 26.50

40 4 41 17685 17633.30 17639 0.260% 175.60 17637 0.271% 24.30

73

Table A.1: continued

BCP-PMWT-OTI BCP-PMWT

n m Inst Heu UB First LB Root LB Gap Time Root LB Gap Time

40 4 56 826 797.20 817 1.090% 105.50 817 1.090% 45.50

40 4 61 7357 7315.47 7326 0.421% 304.00 7322 0.476% 22.80

40 4 66 20251 20247.00 20251 32.50 20251 1.70

40 4 81 564 549.46 560 0.709% 162.80 560 0.709% 37.90

40 4 86 4725 4719.00 4725 79.50 4725 6.80

40 4 91 15569 15556.10 15562 0.045% 138.90 15562 0.045% 27.00

40 4 111 11263 11211.20 11221 0.373% 175.80 11219 0.391% 58.60

40 4 116 15566 15538.50 15546 0.128% 109.90 15545 0.135% 19.70

40 4 121 35751 35739.00 35740 0.031% 88.60 35741 0.028% 39.10

50 2 1 1268 1231.97 1268 204.30 1268 296.60

50 2 6 14272 14260.60 14272 156.40 14272 63.10

50 2 11 23028 22999.90 23028 100.70 23028 21.30

50 2 16 46072 46010.30 46072 139.60 46072 25.10

50 2 21 111069 111066.00 111069 24.00 111069 0.70

50 2 31 5378 5288.13 5342 0.669% 413.60 5349 0.539% 1060.20

50 2 36 18956 18894.80 18956 141.20 18956 26.80

50 2 41 38058 37967.40 38041 0.045% 704.50 38050 0.021% 341.60

50 2 46 82105 82084.60 82105 121.20 82105 31.50

50 2 56 761 729.27 761 532.40 761 232.70

50 2 61 13682 13588.60 13682 2300.20 13619 0.460% 614.00

50 2 66 40907 40903.10 40907 24.60 40907 0.60

50 2 81 542 537.66 542 26.80 542 5.30

50 2 86 12557 12276.20 12461 0.765% 844.80 12427 1.035% 946.70

50 2 91 47349 47293.80 47338 0.023% 636.70 47330 0.040% 492.30

50 2 96 92822 92802.00 92822 49.10 92822 6.30

50 2 111 15564 15543.20 15564 20.40 15564 3.50

50 2 116 19608 19523.80 19579 0.148% 826.20 19573 0.178% 453.30

50 4 1 785 776.87 785 112.10 785 24.80

50 4 6 8317 8297.16 8304 0.156% 129.10 8304 0.156% 110.80

50 4 11 12879 12870.90 12876 0.023% 171.80 12875 0.031% 71.20

50 4 16 25376 25374.70 25376 54.80 25376 8.00

50 4 36 10796 10793.20 10796 25.40 10796 5.00

50 4 41 21806 21782.60 21786 0.092% 305.10 21785 0.096% 44.90

50 4 46 44455 44451.80 44453 0.004% 131.90 44455 15.10

74

Table A.1: continued

BCP-PMWT-OTI BCP-PMWT

n m Inst Heu UB First LB Root LB Gap Time Root LB Gap Time

50 4 56 570 537.64 540 5.263% 58.20 541 5.088% 45.80

50 4 61 7898 7849.71 7857 0.519% 260.50 7857 0.519% 81.80

50 4 71 42645 42624.80 42628 0.040% 245.10 42628 0.040% 138.40

50 4 81 495 477.91 495 108.20 495 64.90

50 4 86 8369 8329.27 8336 0.394% 313.90 8336 0.394% 163.30

50 4 91 26551 26546.00 26551 69.70 26548 0.011% 111.60

50 4 96 50326 50311.70 50317 0.018% 256.90 50317 0.018% 91.00

50 4 111 10069 10048.80 10051 0.179% 196.10 10051 0.179% 63.20

50 4 116 11552 11519.40 11523 0.251% 147.60 11523 0.251% 54.40

50 4 121 23792 23768.20 23776 0.067% 219.70 23775 0.071% 58.50

100 2 1 3339 3313.40 3333 0.180% 3538.80 3322 0.509% 814.60

100 2 6 30665 30644.00 30665 449.30 30665 328.10

100 2 11 93894 111977.00 93894 0.00 93894 17.20

100 2 16 209100 209062.00 209100 122.90 209100 5086.70

100 2 21 457836 457814.00 457836 229.30 457836 24.30

100 2 31 12729 12725.00 12729 146.20 12729 210.50

100 2 36 56671 56575.00 56620 0.090% 4281.40 56590 0.143% 804.70

100 2 41 237964 237772.00 237881 0.035% 6148.40 237841 0.052% 19685.20

100 2 46 422831 422804.00 422831 451.30 422830 0.000% 1525.30

100 2 56 5047 4982.07 5047 819.00 5047 796.90

100 2 61 45573 45423.10 45488 0.187% 4809.20 45481 0.202% 6818.20

100 2 66 126513 126408.00 126492 0.017% 4567.90 126477 0.028% 6969.70

100 2 71 327305 327300.00 327305 71.40 327305 3.10

100 2 81 908 791.69 908 1204.00 830 8.590% 968.90

100 2 86 36581 36217.20 36402 0.489% 3790.00 36322 0.708% 3234.00

100 2 91 129929 129619.00 129795 0.103% 10037.90 129752 0.136% 3617.10

100 2 96 254194 254140.00 254194 440.30 254194 400.20

100 2 111 84220 84004.10 84138 0.097% 6828.30 84097 0.146% 6578.00

100 2 116 191186 191085.00 191178 0.004% 5317.00 191173 0.007% 11118.60

100 2 121 242018 241953.00 241998 0.008% 149458.60 241997 0.009% 56938.90

100 4 1 2001 1989.28 2001 626.70 2001 668.10

100 4 11 50232 50198.00 50203 0.058% 625.00 50203 0.058% 951.30

100 4 16 110219 110114.00 110120 0.090% 395.60 110118 0.092% 950.60

100 4 21 237392 237388.00 237388 0.002% 457.20 237390 0.001% 1047.80

75

Table A.1: continued

BCP-PMWT-OTI BCP-PMWT

n m Inst Heu UB First LB Root LB Gap Time Root LB Gap Time

100 4 31 7130 7080.00 7082 0.673% 500.80 7082 0.673% 1156.70

100 4 36 30791 30772.10 30782 0.029% 1097.70 30783 0.026% 1654.20

100 4 41 126185 126130.00 126146 0.031% 1229.30 126144 0.032% 923.40

100 4 46 219536 219526.00 219529 0.003% 567.00 219529 0.003% 910.00

100 4 56 3076 3020.93 3030 1.495% 867.40 3030 1.495% 1102.50

100 4 61 24856 24805.30 24824 0.129% 496.70 24821 0.141% 1094.90

100 4 66 67970 67947.00 67955 0.022% 973.10 67954 0.024% 819.70

100 4 71 170691 170673.00 170675 0.009% 766.30 170675 0.009% 398.80

100 4 81 819 753.51 785 4.151% 849.90 772 5.739% 1242.50

100 4 86 21286 21208.30 21220 0.310% 614.40 21218 0.319% 798.60

100 4 91 70608 70581.50 70587 0.030% 941.30 70589 0.027% 1640.70

100 4 96 133587 133572.00 133574 0.010% 588.20 133575 0.009% 443.80

100 4 111 46719 46615.20 46633 0.184% 1025.70 46630 0.191% 1094.30

100 4 116 101551 101513.00 101520 0.031% 505.10 101520 0.031% 871.70

100 4 121 127619 127592.00 127597 0.017% 1190.40 127597 0.017% 926.70

76

B DETAILED TIME-INDEXED FORMULATIONS PERFORMANCE

Table B.1: Comparison of Alternative Time-Indexed Formulations

LP Time(s) MIP Time (s)

n m Inst Fy My Fz Mz Fy My Fz Mz

40 2 61 0.78 0.57 7.05 1.15 235.6 1379.7 712.1 238.9

40 2 66 2.72 2.75 43.87 3.01 218.4 1350.1 460.3 316.7

40 4 31 0.47 0.93 10.30 0.82 996.8 ≥3600 57.4 32.0

40 4 36 0.38 0.37 4.25 0.40 140.8 676.4 15.7 7.1

40 4 41 0.44 0.51 4.47 0.58 13.3 34.9 4.5 4.7

40 4 56 0.46 1.21 8.33 1.54 28.0 ≥3600 340.0 52.9

40 4 61 0.18 0.22 1.32 0.39 12.3 44.3 13.8 5.8

40 4 81 0.05 0.06 0.27 0.08 0.1 0.7 0.2 0.6

40 4 91 0.01 0.04 0.03 0.02 0.1 0.3 0.3 0.2

40 4 111 0.19 0.23 1.78 0.46 5.6 19.3 11.1 3.7

40 4 116 0.14 0.19 0.99 0.22 4.7 9.3 7.9 3.1

40 4 121 0.12 0.34 0.70 0.19 1.0 4.6 3.3 2.0

50 2 31 10.56 9.29 515.22 13.62 ≥3600 ≥3600 ≥3600 ≥3600

50 2 41 1.54 2.33 18.56 1.80 3.9 18.0 30.3 12.9

50 2 61 3.44 2.30 94.61 3.39 ≥3600 ≥3600 296.3 26.4

50 2 86 2.28 1.42 38.53 4.04 2631.5 ≥3600 ≥3600 2109.8

50 2 91 1.09 1.31 7.24 1.71 6.1 30.8 50.8 23.6

50 2 116 1.20 1.28 20.39 1.70 ≥3600 ≥3600 ≥3600 3066.9

50 4 6 0.86 2.08 51.40 1.42 1001.5 ≥3600 9.2 16.9

77

Table B.1: continued

LP Time(s) MIP Time (s)

n m Inst Fy My Fz Mz Fy My Fz Mz

50 4 11 0.52 0.63 4.61 0.57 4.7 15.4 49.5 11.4

50 4 41 0.56 1.10 7.67 0.67 4.3 29.8 25.9 15.1

50 4 46 0.01 0.05 0.04 0.03 0.1 0.1 0.1 0.1

50 4 56 1.24 3.20 93.93 5.61 ≥3600 ≥3600 2352.9 317.9

50 4 61 0.98 0.76 16.16 0.79 ≥3600 ≥3600 260.4 804.5

50 4 71 0.62 0.88 5.30 0.46 3.1 14.1 26.2 10.7

50 4 86 0.21 0.31 1.67 0.34 27.4 46.9 9.6 3.1

50 4 91 0.05 0.18 0.22 0.10 0.2 0.3 0.7 0.2

50 4 96 0.39 0.71 3.37 0.31 8.8 23.2 13.3 17.0

50 4 111 0.15 0.19 0.96 0.44 1.8 3.6 3.6 3.1

50 4 116 0.43 0.47 3.74 0.53 489.8 1415.7 558.1 76.0

50 4 121 0.49 0.94 5.01 0.48 38.2 55.3 8.8 8.2

Table B.2: Effect of Variable Fixation in the Mz Time-Index Formulation

First LP Time (s) MIP Time (s)

n m Inst Fix. w/ Fix. Fix. w/ Fix.

40 2 61 1.16 83.16 232.8 ≥3600

40 2 66 3.03 68.65 389.4 ≥3600

40 4 31 0.81 15.28 11.4 698.4

40 4 36 0.40 12.70 16.2 2562.7

40 4 41 0.57 15.05 6.1 70.0

40 4 56 1.54 10.72 59.8 1528.7

40 4 61 0.39 11.36 6.8 157.2

40 4 81 0.08 18.15 0.4 44.6

40 4 91 0.02 9.06 0.2 50.3

40 4 111 0.45 14.55 6.0 296.1

40 4 116 0.22 8.22 2.0 106.4

78

Table B.2: continued

First LP Time (s) MIP Time (s)

n m Inst Fix. w/ Fix. Fix. w/ Fix.

40 4 121 0.19 3.56 2.1 101.5

50 2 31 13.71 717.17 3010.9 ≥3600

50 2 41 1.80 193.44 20.3 ≥3600

50 2 86 4.03 257.36 2616.2 ≥3600

50 2 91 1.71 172.52 31.0 ≥3600

50 2 116 1.70 120.13 3081.3 ≥3600

50 4 6 1.43 71.88 12.8 1921.7

50 4 11 0.56 17.88 15.4 394.7

50 4 41 0.67 19.62 18.7 193.5

50 4 46 0.03 3.56 0.1 9.3

50 4 56 5.62 20.79 252.5 ≥3600

50 4 61 0.79 70.42 97.1 ≥3600

50 4 71 0.46 10.51 17.7 157.9

50 4 86 0.35 37.98 5.3 475.7

50 4 96 0.32 6.87 14.1 162.7

50 4 111 0.45 50.12 8.4 907.0

50 4 116 0.53 13.87 395.6 ≥3600

50 4 121 0.48 15.13 12.2 246.9

Table B.3: Effect of Projected Cuts in the Mz Time-Indexed Formulation

n m Inst Heu UB
ATIF

Root LB

ATIF

Root Gap

1st TIF

LP LB

1st TIF

LP Gap
Root LB Root Gap Gap Improv.

100 2 1 3339 3333 0.180% 3314 0.749% 3314 0.749% 0.00%

100 2 36 56671 56620 0.090% 56557 0.201% 56575 0.169% 15.79%

100 2 41 237964 237881 0.035% 237734 0.097% 237771 0.081% 16.09%

100 2 61 45573 45488 0.187% 45370 0.445% 45390 0.402% 9.85%

100 2 66 126513 126492 0.017% 126374 0.110% 126405 0.085% 22.30%

100 2 86 36581 36402 0.489% 36171 1.121% 36217 0.995% 11.22%

100 2 91 129929 129795 0.103% 129557 0.286% 129618 0.239% 16.40%

79

Table B.3: continued

n m Inst Heu UB
ATIF

Root LB

ATIF

Root Gap

1st TIF

LP LB

1st TIF

LP Gap
Root LB Root Gap Gap Improv.

100 2 111 84220 84138 0.097% 83970 0.297% 84004 0.256% 13.60%

100 2 116 191186 191178 0.004% 191072 0.060% 191084 0.053% 10.53%

100 2 121 242018 241998 0.008% 241937 0.033% 241953 0.027% 19.75%

100 4 11 50232 50203 0.058% 50194 0.076% 50198 0.068% 10.53%

100 4 16 110219 110120 0.090% 110102 0.106% 110111 0.098% 7.69%

100 4 21 237392 237388 0.002% 237388 0.002% 237388 0.002% 0.00%

100 4 31 7130 7082 0.673% 7080 0.701% 7080 0.701% 0.00%

100 4 36 30791 30782 0.029% 30773 0.058% 30773 0.058% 0.00%

100 4 41 126185 126146 0.031% 126126 0.047% 126130 0.044% 6.78%

100 4 46 219536 219529 0.003% 219525 0.005% 219526 0.005% 9.09%

100 4 56 3076 3030 1.495% 3021 1.788% 3021 1.788% 0.00%

100 4 61 24856 24824 0.129% 24795 0.245% 24806 0.201% 18.03%

100 4 66 67970 67955 0.022% 67938 0.047% 67947 0.034% 28.13%

100 4 71 170691 170675 0.009% 170671 0.012% 170673 0.011% 10.00%

100 4 81 819 785 4.151% 754 7.937% 754 7.937% 0.00%

100 4 86 21286 21220 0.310% 21180 0.498% 21209 0.362% 27.36%

100 4 91 70608 70587 0.030% 70575 0.047% 70582 0.037% 21.21%

100 4 96 133587 133574 0.010% 133561 0.019% 133572 0.011% 42.31%

100 4 111 46719 46633 0.184% 46608 0.238% 46615 0.223% 6.31%

100 4 116 101551 101520 0.031% 101510 0.040% 101513 0.037% 7.32%

100 4 121 127619 127597 0.017% 127590 0.023% 127592 0.021% 6.90%

80

C FULL RESULTS

Ta
bl

e
C

.1
:D

et
ai

le
d

R
es

ul
ts

fo
rm

=
2

an
d
n

=
40

in
st

an
ce

s

B
C

P-
PM

W
T

B
C

P-
PM

W
T-

O
T

I

In
st

U
B

R
oo

tL
B

R
oo

t

Ti
m

e

B
C

P

Ti
m

e

A
T

IF
M

IP

Ti
m

e
B

es
t

O
ve

ra
ll

Ti
m

e
U

B
R

oo
tL

B
R

oo
t

Ti
m

e

B
C

P

Ti
m

e

T
IF

M
IP

Ti
m

e
B

es
t

O
ve

ra
ll

Ti
m

e

1
60

6
60

6
80

.9
0

R
oo

t
80

.9
60

6
60

6
12

8.
30

R
oo

t
12

8.
30

6
38

86
38

86
27

.7
0

R
oo

t
27

.7
38

86
38

86
59

.6
0

R
oo

t
59

.6
0

11
96

17
96

17
22

.3
0

R
oo

t
22

.3
96

17
96

17
34

.8
0

R
oo

t
34

.8
0

16
38

35
6

38
35

6
59

.1
0

R
oo

t
59

.1
38

35
6

38
35

6
13

1.
70

R
oo

t
13

1.
70

31
38

12
38

12
49

.2
0

R
oo

t
49

.2
38

12
38

12
92

.4
0

R
oo

t
92

.4
0

36
10

71
3

10
71

3
65

.7
0

R
oo

t
65

.7
10

71
3

10
71

3
15

5.
00

R
oo

t
15

5.
00

56
12

79
12

79
24

.3
0

R
oo

t
24

.3
12

79
12

79
24

.7
0

R
oo

t
24

.7
0

61
11

48
8

11
39

4
70

5.
70

23
98

.5
0

19
94

.0
0

M
IP

26
99

.7
11

48
8

11
45

9
57

3.
20

53
1.

30
23

7.
67

M
IP

81
0.

87

66
35

27
9

35
19

7
22

0.
40

30
7.

80
17

76
.0

0
B

C
P

52
8.

2
35

27
9

35
20

3
43

1.
30

77
4.

40
86

.4
7

M
IP

51
7.

77

71
47

95
2

47
95

2
15

.6
0

R
oo

t
15

.6
47

95
2

47
95

2
28

.2
0

R
oo

t
28

.2
0

81
57

3
57

1
83

.7
0

R
oo

t
83

.7
57

1
57

1
20

7.
40

R
oo

t
20

7.
40

86
60

48
60

48
46

.2
0

R
oo

t
46

.2
60

48
60

48
23

3.
10

R
oo

t
23

3.
10

96
66

11
6

66
11

6
22

.8
0

R
oo

t
22

.8
66

11
6

66
11

6
18

.3
0

R
oo

t
18

.3
0

11
1

17
93

6
17

93
6

28
.1

0
R

oo
t

28
.1

17
93

6
17

93
6

86
.7

0
R

oo
t

86
.7

0

11
6

25
87

4
25

87
0

66
.6

0
R

oo
t

66
.6

25
87

0
25

87
0

91
.4

0
R

oo
t

91
.4

0

12
1

64
51

6
64

51
6

24
.3

0
R

oo
t

24
.3

64
51

6
64

51
6

14
.8

0
R

oo
t

14
.8

0

81

Ta
bl

e
C

.2
:D

et
ai

le
d

R
es

ul
ts

fo
rm

=
4

an
d
n

=
40

in
st

an
ce

s

B
C

P-
PM

W
T

B
C

P-
PM

W
T-

O
T

I

In
st

U
B

R
oo

tL
B

R
oo

t

Ti
m

e

B
C

P

Ti
m

e

A
T

IF
M

IP

Ti
m

e
B

es
t

O
ve

ra
ll

Ti
m

e
U

B
R

oo
tL

B
R

oo
t

Ti
m

e

B
C

P

Ti
m

e

T
IF

M
IP

Ti
m

e
B

es
t

O
ve

ra
ll

Ti
m

e

1
43

9
43

9
11

.4
0

R
oo

t
11

.4
43

9
43

9
26

.3
0

R
oo

t
26

.3
0

6
23

74
23

74
11

.1
0

R
oo

t
11

.1
23

74
23

74
35

.1
0

R
oo

t
35

.1
0

11
57

37
57

37
10

.3
0

R
oo

t
10

.3
57

37
57

37
11

.4
0

R
oo

t
11

.4
0

16
21

49
3

21
49

0
30

.4
0

R
oo

t
30

.4
21

49
3

21
49

3
37

0.
10

R
oo

t
37

0.
10

31
25

25
25

00
50

.1
0

29
32

.6
0

12
17

2.
30

B
C

P
29

82
.7

25
25

25
07

14
9.

60
10

0.
00

12
.3

2
M

IP
16

1.
92

36
64

20
63

64
37

.3
0

18
79

9.
50

28
29

.7
0

M
IP

28
67

64
20

63
68

35
4.

30
31

06
8.

00
5.

96
M

IP
36

0.
26

41
17

68
5

17
63

7
36

.1
0

18
56

.0
0

12
8.

00
M

IP
16

4.
1

17
68

5
17

63
9

17
8.

10
12

93
.3

0
3.

23
M

IP
18

1.
33

56
82

6
81

7
54

.6
0

>
86

40
0

87
8.

00
M

IP
93

2.
6

82
6

81
7

10
7.

30
11

20
.6

0
49

.6
5

M
IP

15
6.

95

61
73

57
73

22
33

.8
0

23
0.

20
14

3.
00

M
IP

17
6.

8
73

57
73

26
30

6.
40

38
0.

50
4.

70
M

IP
31

1.
10

66
20

25
1

20
25

1
12

.9
0

R
oo

t
12

.9
20

25
1

20
25

1
34

.1
0

R
oo

t
34

.1
0

81
56

5
56

0
46

.4
0

9.
70

0.
90

M
IP

47
.3

56
4

56
0

16
5.

20
6.

10
0.

04
M

IP
16

5.
24

86
47

25
47

25
15

.3
0

R
oo

t
15

.3
47

25
47

25
81

.5
0

R
oo

t
81

.5
0

91
15

56
9

15
56

2
39

.4
0

9.
60

0.
70

M
IP

40
.1

15
56

9
15

56
2

14
1.

00
0.

50
0.

07
M

IP
14

1.
07

11
1

11
26

3
11

21
9

72
.0

0
30

3.
90

10
5.

30
M

IP
17

7.
3

11
26

3
11

22
1

17
7.

60
22

0.
70

5.
54

M
IP

18
3.

14

11
6

15
56

6
15

54
5

31
.3

0
10

1.
40

40
.4

0
M

IP
71

.7
15

56
6

15
54

6
11

2.
20

19
7.

70
2.

93
M

IP
11

5.
13

12
1

35
75

1
35

74
1

52
.0

0
42

.6
0

4.
70

M
IP

56
.7

35
75

1
35

74
0

90
.6

0
60

.6
0

1.
28

M
IP

91
.8

8

82

Ta
bl

e
C

.3
:D

et
ai

le
d

R
es

ul
ts

fo
rm

=
2

an
d
n

=
50

in
st

an
ce

s

B
C

P-
PM

W
T

B
C

P-
PM

W
T-

O
T

I

In
st

U
B

R
oo

tL
B

R
oo

t

Ti
m

e

B
C

P

Ti
m

e

A
T

IF
M

IP

Ti
m

e
B

es
t

O
ve

ra
ll

Ti
m

e
U

B
R

oo
tL

B
R

oo
t

Ti
m

e

B
C

P

Ti
m

e

T
IF

M
IP

Ti
m

e
B

es
t

O
ve

ra
ll

Ti
m

e

1
12

68
12

68
34

5.
80

R
oo

t
34

5.
8

12
68

12
68

20
9.

30
R

oo
t

20
9.

30

6
14

27
2

14
27

2
12

2.
80

R
oo

t
12

2.
8

14
27

2
14

27
2

16
2.

10
R

oo
t

16
2.

10

11
23

02
8

23
02

8
67

.1
0

R
oo

t
67

.1
23

02
8

23
02

8
10

6.
50

R
oo

t
10

6.
50

16
46

07
2

46
07

2
59

.4
0

R
oo

t
59

.4
46

07
2

46
07

2
14

4.
90

R
oo

t
14

4.
90

21
11

10
69

11
10

69
36

.1
0

R
oo

t
36

.1
11

10
69

11
10

69
29

.3
0

R
oo

t
29

.3
0

31
53

78
53

49
11

10
.2

0
11

60
8.

90
11

99
7.

50
B

C
P

12
71

9.
1

53
78

53
42

41
9.

50
10

64
.6

0
46

98
.2

6
B

C
P

14
84

.1
0

36
18

95
6

18
95

6
73

.3
0

R
oo

t
73

.3
18

95
6

18
95

6
14

6.
70

R
oo

t
14

6.
70

41
38

05
8

38
05

0
38

1.
50

16
.7

0
43

.5
0

B
C

P
39

8.
2

38
05

8
38

04
1

71
0.

80
19

4.
20

15
.9

9
M

IP
72

6.
79

46
82

10
5

82
10

5
66

.0
0

R
oo

t
66

82
10

5
82

10
5

12
6.

00
R

oo
t

12
6.

00

56
76

1
76

1
26

7.
40

R
oo

t
26

7.
4

76
1

76
1

53
6.

70
R

oo
t

53
6.

70

61
13

68
2

13
61

9
66

1.
40

83
12

2.
80

36
09

4.
60

M
IP

36
75

6
13

68
2

13
68

2
23

06
.4

0
R

oo
t

23
06

.4
0

66
40

90
7

40
90

7
37

.5
0

R
oo

t
37

.5
40

90
7

40
90

7
29

.1
0

R
oo

t
29

.1
0

81
54

2
54

2
40

.5
0

R
oo

t
40

.5
54

2
54

2
31

.6
0

R
oo

t
31

.6
0

86
12

55
7

12
42

7
99

9.
30

13
81

7.
70

23
07

0.
00

B
C

P
14

81
7

12
55

7
12

46
1

85
0.

60
41

37
.3

0
18

94
.5

7
M

IP
27

45
.1

7

91
47

34
9

47
33

0
55

2.
60

21
0.

60
20

4.
50

M
IP

75
7.

1
47

34
9

47
33

8
64

1.
30

12
6.

80
26

.5
5

M
IP

66
7.

85

96
92

82
2

92
82

2
60

.9
0

R
oo

t
60

.9
92

82
2

92
82

2
54

.0
0

R
oo

t
54

.0
0

11
1

15
56

4
15

56
4

66
.6

0
R

oo
t

66
.6

15
56

4
15

56
4

25
.8

0
R

oo
t

25
.8

0

11
6

19
60

9
19

57
3

50
8.

80
23

90
.7

0
85

39
.5

0
B

C
P

28
99

.5
19

60
8

19
57

9
83

1.
20

11
96

.0
0

29
17

.7
1

B
C

P
20

27
.2

0

83

Ta
bl

e
C

.4
:D

et
ai

le
d

R
es

ul
ts

fo
rm

=
4

an
d
n

=
50

in
st

an
ce

s

B
C

P-
PM

W
T

B
C

P-
PM

W
T-

O
T

I

In
st

U
B

R
oo

tL
B

R
oo

t

Ti
m

e

B
C

P

Ti
m

e

A
T

IF
M

IP

Ti
m

e
B

es
t

O
ve

ra
ll

Ti
m

e
U

B
R

oo
tL

B
R

oo
t

Ti
m

e

B
C

P

Ti
m

e

T
IF

M
IP

Ti
m

e
B

es
t

O
ve

ra
ll

Ti
m

e

1
78

5
78

5
56

.4
0

R
oo

t
56

.4
78

5
78

5
11

5.
50

R
oo

t
11

5.
50

6
83

17
83

04
14

7.
10

>
86

40
0

78
14

0.
00

M
IP

78
28

7.
1

83
17

83
04

13
2.

50
23

61
.9

0
21

.4
2

M
IP

15
3.

92

11
12

87
9

12
87

5
98

.9
0

56
91

.6
0

43
.8

0
M

IP
14

2.
7

12
87

9
12

87
6

17
5.

40
20

7.
50

9.
77

M
IP

18
5.

17

16
25

37
6

25
37

6
31

.2
0

R
oo

t
31

.2
25

37
6

25
37

6
58

.4
0

R
oo

t
58

.4
0

36
10

79
6

10
79

6
35

.1
0

R
oo

t
35

.1
10

79
6

10
79

6
28

.9
0

R
oo

t
28

.9
0

41
21

80
6

21
78

5
72

.7
0

23
2.

40
68

.1
0

M
IP

14
0.

8
21

80
6

21
78

6
30

8.
30

84
4.

80
21

.5
8

M
IP

32
9.

88

46
44

45
5

44
45

5
40

.5
0

R
oo

t
40

.5
44

45
5

44
45

3
13

5.
40

0.
10

0.
05

M
IP

13
5.

45

56
57

0
54

1
67

.8
0

>
86

40
0

18
12

6.
00

M
IP

18
19

3.
8

57
0

54
0

61
.8

0
>1

44
06

.0
44

9.
66

M
IP

51
1.

46

61
78

98
78

57
11

3.
70

>
86

40
0

27
99

7.
40

M
IP

28
11

1.
1

78
98

78
57

26
4.

20
54

13
.2

0
84

0.
28

M
IP

11
04

.4
8

71
42

64
5

42
62

8
21

8.
80

33
6.

60
42

.3
0

M
IP

26
1.

1
42

64
5

42
62

8
24

7.
90

31
7.

90
17

.0
8

M
IP

26
4.

98

81
49

5
49

5
11

8.
90

R
oo

t
11

8.
9

49
5

49
5

11
1.

80
R

oo
t

11
1.

80

86
83

69
83

36
24

1.
30

57
5.

20
35

5.
60

M
IP

59
6.

9
83

69
83

36
31

7.
60

18
8.

00
4.

82
M

IP
32

2.
42

91
26

55
2

26
54

8
18

7.
60

R
oo

t
18

7.
6

26
55

1
26

55
1

73
.2

0
R

oo
t

73
.2

0

96
50

32
6

50
31

7
18

3.
20

26
1.

10
32

.4
0

M
IP

21
5.

6
50

32
6

50
31

7
26

0.
10

27
9.

50
10

.3
7

M
IP

27
0.

47

11
1

10
06

9
10

05
1

13
4.

60
52

.0
0

43
.8

0
M

IP
17

8.
4

10
06

9
10

05
1

19
9.

80
89

.4
0

4.
85

M
IP

20
4.

65

11
6

11
55

2
11

52
3

11
4.

30
45

69
3.

50
40

87
.2

0
M

IP
42

01
.5

11
55

2
11

52
3

15
1.

30
30

04
6.

20
32

5.
91

M
IP

47
7.

21

12
1

23
79

2
23

77
5

85
.3

0
43

8.
50

24
8.

50
M

IP
33

3.
8

23
79

2
23

77
6

22
3.

40
31

4.
40

6.
72

M
IP

23
0.

12

84

Ta
bl

e
C

.5
:D

et
ai

le
d

R
es

ul
ts

fo
rm

=
2

an
d
n

=
10

0
in

st
an

ce
s

B
C

P-
PM

W
T

B
C

P-
PM

W
T-

O
T

I

In
st

U
B

R
oo

tL
B

R
oo

t

Ti
m

e

B
C

P

Ti
m

e

A
T

IF
M

IP

Ti
m

e
B

es
t

O
ve

ra
ll

Ti
m

e
U

B
R

oo
tL

B
R

oo
t

Ti
m

e

B
C

P

Ti
m

e

T
IF

M
IP

Ti
m

e
B

es
t

O
ve

ra
ll

Ti
m

e

1
33

39
33

22
16

06
.0

0
>

14
40

0
33

39
33

33
35

93
.7

0
24

93
.1

0
≥

36
00

B
C

P
60

86
.8

0

6
30

66
5

30
66

5
10

01
.5

0
R

oo
t

10
01

.5
30

66
5

30
66

5
49

3.
40

R
oo

t
49

3.
40

11
93

89
4

93
89

4
61

3.
00

R
oo

t
61

3
93

89
4

93
89

4
40

.2
0

R
oo

t
40

.2
0

16
20

91
00

20
91

00
56

03
.6

0
R

oo
t

56
03

.6
20

91
00

20
91

00
17

7.
10

R
oo

t
17

7.
10

21
45

78
36

45
78

36
12

48
.7

0
R

oo
t

12
48

.7
45

78
36

45
78

36
39

1.
20

R
oo

t
39

1.
20

31
12

72
9

12
72

9
92

7.
70

R
oo

t
92

7.
7

12
72

9
12

72
9

18
6.

10
R

oo
t

18
6.

10

36
56

67
1

56
59

0
14

35
.7

0
>

14
40

0
56

67
1

56
62

0
43

24
.9

0
>9

32
4.

2
22

50
6.

30
M

IP
26

83
1.

20

41
23

79
64

23
78

41
20

43
6.

30
>

20
43

6
12

07
21

.7
0

M
IP

14
11

58
23

79
64

23
78

81
61

93
.2

0
13

49
9.

10
32

04
7.

52
B

C
P

19
69

2.
30

46
42

28
31

42
28

30
20

77
.9

0
44

.1
0

51
.9

0
B

C
P

21
22

42
28

31
42

28
31

55
9.

20
R

oo
t

55
9.

20

56
50

47
50

47
15

82
.3

0
R

oo
t

15
82

.3
50

47
50

47
86

5.
50

R
oo

t
86

5.
50

61
45

57
3

45
48

1
73

53
.8

0
>

14
40

0
>

86
40

0
45

57
3

45
48

8
48

52
.3

0
>8

85
9.

2
≥

17
28

00

66
12

65
22

12
64

77
75

26
.5

0
23

42
5.

60
>

86
40

0
B

C
P

30
95

2.
1

12
65

13
12

64
92

46
13

.9
0

73
98

.4
0

54
13

.9
4

M
IP

10
02

7.
84

71
32

73
05

32
73

05
63

0.
20

R
oo

t
63

0.
2

32
73

05
32

73
05

11
8.

30
R

oo
t

11
8.

30

81
90

8
83

0
12

99
.2

0
>

14
40

0
90

8
90

8
12

63
.0

0
R

oo
t

12
63

.0
0

86
36

58
1

36
32

2
39

05
.2

0
>

14
40

0
>

86
40

0
36

58
1

36
40

2
38

45
.0

0
>6

45
8.

4
≥

17
28

00

91
12

99
31

12
97

52
42

59
.4

0
>

14
40

0
>

86
40

0
12

99
29

12
97

95
10

09
3.

70
>2

93
2.

0
≥

17
28

00

96
25

41
94

25
41

94
10

30
.5

0
R

oo
t

10
30

.5
25

41
94

25
41

94
47

8.
30

R
oo

t
47

8.
30

11
1

84
27

4
84

09
7

74
24

.3
0

>
14

40
0

>
86

40
0

84
22

0
84

13
8

68
80

.0
0

>7
32

3.
3
≥

17
28

00

11
6

19
11

98
19

11
73

11
74

0.
20

>
14

40
0

32
56

7.
70

M
IP

44
30

7.
9

19
11

86
19

11
78

53
50

.8
0

19
83

.0
0

15
40

.9
0

M
IP

68
91

.7
0

85

Ta
bl

e
C

.5
:c

on
tin

ue
d

B
C

P-
PM

W
T

B
C

P-
PM

W
T-

O
T

I

In
st

U
B

R
oo

tL
B

R
oo

t

Ti
m

e

B
C

P

Ti
m

e

A
T

IF
M

IP

Ti
m

e
B

es
t

O
ve

ra
ll

Ti
m

e
U

B
R

oo
tL

B
R

oo
t

Ti
m

e

B
C

P

Ti
m

e

T
IF

M
IP

Ti
m

e
B

es
t

O
ve

ra
ll

Ti
m

e

12
1

24
20

22
24

19
97

57
55

9.
60

>
86

40
0

40
72

.4
0

M
IP

61
63

2
24

20
18

24
19

98
14

94
99

.4
0

>0
.3

13
98

.5
6

M
IP

15
08

97
.9

6

86

Ta
bl

e
C

.6
:D

et
ai

le
d

R
es

ul
ts

fo
rm

=
4

an
d
n

=
10

0
in

st
an

ce
s

B
C

P-
PM

W
T

B
C

P-
PM

W
T-

O
T

I

In
st

U
B

R
oo

tL
B

R
oo

t

Ti
m

e

B
C

P

Ti
m

e

A
T

IF
M

IP

Ti
m

e
B

es
t

O
ve

ra
ll

Ti
m

e
U

B
R

oo
tL

B
R

oo
t

Ti
m

e

B
C

P

Ti
m

e

T
IF

M
IP

Ti
m

e
B

es
t

O
ve

ra
ll

Ti
m

e

1
20

01
20

01
13

37
.3

0
R

oo
t

13
37

.3
20

01
20

01
67

9.
90

R
oo

t
67

9.
90

11
50

23
6

50
20

3
14

39
.4

0
>

14
40

0
50

23
2

50
20

3
65

9.
50

>1
32

90
.5

35
71

.2
0

M
IP

42
30

.7
0

16
11

02
22

11
01

18
14

49
.2

0
>

14
40

0
>

86
40

0
11

02
19

11
01

20
42

9.
20

>1
38

58
.9
≥

17
28

00

21
23

73
92

23
73

90
14

93
.8

0
5.

50
29

.0
0

B
C

P
14

99
.3

23
73

92
23

73
88

47
9.

50
7.

80
0.

55
M

IP
48

0.
05

31
71

30
70

82
19

01
.5

0
>

14
40

0
71

30
70

82
54

8.
30

>1
53

16
.0

≥
36

00

36
30

79
1

30
78

3
22

01
.3

0
>

14
40

0
30

79
1

30
78

2
11

27
.9

0
>1

34
59

.9
19

0.
75

M
IP

13
18

.6
5

41
12

61
93

12
61

44
14

93
.6

0
11

04
1.

30
41

68
2.

90
B

C
P

12
53

4.
9

12
61

85
12

61
46

12
51

.3
0

63
03

.5
0

43
5.

71
M

IP
16

87
.0

1

46
21

95
37

21
95

29
13

72
.0

0
25

6.
30

80
0.

90
B

C
P

16
28

.3
21

95
36

21
95

29
59

0.
30

29
8.

10
25

.2
7

M
IP

61
5.

57

56
30

76
30

30
17

27
.3

0
>

14
40

0
30

76
30

30
91

4.
50

>1
38

07
.4

≥
36

00

61
24

86
8

24
82

1
16

82
.5

0
>

14
40

0
>

86
40

0
24

85
6

24
82

4
52

5.
00

>8
53

92
.2

75
1.

04
M

IP
12

76
.0

4

66
67

97
9

67
95

4
12

67
.7

0
28

85
.7

0
37

38
.2

0
B

C
P

41
53

.4
67

97
0

67
95

5
99

7.
40

90
7.

40
23

2.
73

M
IP

12
30

.1
3

71
17

06
99

17
06

75
86

2.
90

>
14

40
0

81
02

8.
10

M
IP

81
89

1
17

06
91

17
06

75
79

0.
10

84
91

4.
00

12
99

.6
0

M
IP

20
89

.7
0

81
81

9
77

2
15

94
.4

0
>

14
40

0
M

IP
0

81
9

78
5

90
0.

70
91

6.
80

12
33

.7
3

B
C

P
18

17
.5

0

86
21

29
9

21
21

8
13

79
.0

0
>

14
40

0
>

86
40

0
21

28
6

21
22

0
64

6.
50

>1
34

45
.9

11
85

7.
18

M
IP

12
50

3.
68

91
70

61
2

70
58

9
21

19
.4

0
14

36
.3

0
73

18
.0

0
B

C
P

35
55

.7
70

60
8

70
58

7
96

6.
10

20
09

.2
0

21
0.

80
M

IP
11

76
.9

0

96
13

35
91

13
35

75
87

8.
60

31
56

.3
0

19
30

.3
0

M
IP

28
08

.9
13

35
87

13
35

74
61

4.
70

31
3.

10
58

.0
9

M
IP

67
2.

79

11
1

46
76

3
46

63
0

17
04

.6
0

>
14

40
0

>
86

40
0

46
71

9
46

63
3

10
51

.1
0

>1
35

12
.4

57
56

6.
09

M
IP

58
61

7.
19

11
6

10
15

63
10

15
20

13
74

.6
0

>
14

40
0

15
64

40
.1

0
M

IP
15

78
14

.7
10

15
51

10
15

20
52

7.
40

>8
52

99
.3

26
12

.5
3

M
IP

31
39

.9
3

12
1

12
76

39
12

75
97

13
89

.6
0

>
14

40
0

10
80

63
.9

0
M

IP
10

94
53

.5
12

76
19

12
75

97
12

13
.0

0
18

75
6.

60
29

90
.6

2
M

IP
42

03
.6

2

	INTRODUCTION
	MOTIVATION
	THEME DEFINITION
	ACHIEVED RESULTS
	OUTLINE

	THEORETIC FOUNDATIONS
	SCHEDULING
	FRAMEWORK AND NOTATION
	SCHEDULE REPRESENTATION
	THREE EXAMPLES OF SCHEDULING PROBLEMS

	METAHEURISTICS
	GENETIC ALGORITHM

	COLUMN GENERATION
	DANTZIG-WOLFE DECOMPOSITION

	BENDERS DECOMPOSITION

	PREVIOUS WORKS
	THE PROBLEM
	LITERATURE REVIEW
	THE TIME-INDEXED FORMULATION
	THE BCP-PMWT ALGORITHM
	EXTENDED CAPACITY CUTS
	BRANCH-CUT-AND-PRICE

	TRIANGLE CLIQUE CUTS
	SEPARATING ALGORITHM

	PROPOSED IMPROVEMENTS
	THE CAPACITY PATH POLYHEDRON
	OVERLOAD ELIMINATION CUTS
	THE GENETIC ALGORITHM FOR CUT SEPARATION
	TIME-INDEXED FORMULATIONS
	TIME-INDEXED CUTS BY PROJECTION OF THE ARC-TIME-INDEXED FORMULATION

	COMPUTATIONAL TESTS AND RESULTS
	SOLVING THE ARC-TIME-INDEXED LINEAR RELAXATION
	COMPARISON OF DIFFERENT TIME-INDEXED FORMULATIONS
	SOLVING THE PROBLEM TO INTEGRALITY

	CONCLUSION
	APPENDICES
	ROOT NODE RESULTS
	DETAILED TIME-INDEXED FORMULATIONS PERFORMANCE
	FULL RESULTS

